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PURPOSE  
This document serves to enlist the definitions associated with the design-analysis 
integration and MRA implementation and architecture development efforts at Georgia 
Tech.  The overarching goal in this research is towards a unified view of design-analysis 
integration in the context of product design at Georgia Tech.  Based on this view, we 
leverage from other current research in the areas of product design, information 
management, product modeling, simulation-based design, and design and analysis 
integration efforts.  In this context, engineering analysis means simulation of the physical 
behavior of a product artifact for a particular problem scope and domain. 

A secondary goal is to formulate a better understanding of engineering design and 
analysis.  A common view of design-analysis integration is the closer association 
between traditional design tools, such as computer-aided design (CAD) tools and 
computer-aided engineering tools (CAE) such as finite element analysis (FEA).  This 
notion can be somewhat limiting.  The extended approach in this research is toward the 
integration of engineering models throughout the life-cycle of the product.  A subset of 
the models that are integrated over the life cycle of the product are design and analysis 
(simulation) models.  The research advances and contributions made from DAI research 
should be extended to capture additional engineering model associations. In closure, the 
goals in this work are the following: 

• Review and develop a formal lexicon based on existing concepts that have been 
identified and/or addressed in DAI research in the EIS Lab 

• Identify the additional concepts that must be incorporated and considered in this work 
to generalize the research efforts towards engineering models associativity 

• Critically evaluate the current state of technology development and implementation to 
identify areas of opportunistic research.  

 

The research presented in this document is primarily in the context of the Multi-
Representation Architecture (MRA). 
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1 GENERAL DEFINITIONS FOR DESIGN ANALYSIS INTEGRATION 
This section contain concepts for the general research area of design analysis integration 

1.1 Analytical model 
An engineering approximation of physical behavior in exact form 

Example:  A spring system. 

FF
k 

∆ L

deformed state

Lo

L

x2x1

 
Figure 1 - Spring system analytical equation 

The spring equation is:  xkF ⋅=  

The force, F, exerted by the spring is proportional to the spring constant, k, and the 
displacement, x, of the spring.  The equation is the exact form of the analytical model.  
This analytical model may be a simplified abstraction of the actual behavior of the spring.  
The equation is only an approximation of the actual behavior of the spring. 

1.2 Analysis model  
An analytical model or an approximation of the analytical model.  The analysis model 
may be the exact or an approximation of the analytical model.  Several different types of 
approximation techniques may be employed and several different analysis models may be 
utilized 

1.3 Analytical variables 
 A variable that is used in the analysis relation.   

1.4 Analysis idealization  
A transformation from the physical situation into analysis attributes.  The analysis 
idealization is the natural direction of the transformation. 

1.5 Representation 
A computable approximation of the real world for an intended purpose there may be 
more than one way to represent reality.  The intended purpose of the representation 
determines what type of information is needed for the representation.  The representation 
must be able to be implemented in a computer. 

1.6 Information model 
A formal (being in accordance with rules explicitly established prior to use) model (an 
abstract description) of a bounded set of facts, concepts, or instructions to meet a 
specified requirement. 
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1.7 Routine analysis model 
An established analysis model that is repeatedly used for a specific type of product, but 
not a specific product instance. Routine analysis is the process of using routine analysis 
models � using proven models on new instances .  The variables and parameters of the 
product remain fairly well known as do the relations.  However, the value of each 
variable is dependent on the product instance.  Routine analysis does not imply the 
models are simplistic.  The models can be quite complex.  However, the users of the 
models must know the limitations of the models 

1.8 Adaptive analysis model  
Developed by adapting some aspect of a routine analysis model.  Each time a �new� 
model is created, the results must be validated to ensure the analysis model is correct.  
Routine analysis models can be extended for slightly different analysis needs. 

1.9 Original analysis model  
An entirely new model that replaces an existing analysis model for a given type of 
product or analyzed a new type of problem. 

Table 1 - Types of analysis 

Class Task Performer Task Task Output 

Routine Product Designer Use established analysis 
model repeatedly. 

Analysis Results, 
Design Changes 

Adaptive Product Designer or 
Engineering Analyst

Extend routine model 
for same product type. 

Extended Analysis Model, 
Sample Results 

Original Engineering Analyst 
and Experimentalist 

Develop new analysis 
model for same / new 
product type. 

New Analysis Model,  
Sample Results 

1.10 Associativity  
Linking of analysis models with product models.  The data in the analysis must be linked 
to the data of the product 

1.11 Product-analysis transformations (PAT) 
The linkages that are �hard-wired� between the product representation and the analysis 
representation.  These linkages may also be known as extraction of information.  The 
linkages are vital.  The linkages should support bi-direction flows according to the PAT. 

The two types are analysis idealizations and design synthesis operations.  A linkage that 
is between one or more product variables and one or more analytical variables.  The 
PATs are used to link the product variables with some of the analytical variables 

1.12 Analysis-analysis transformations 
A linkage that relates two or more analytical variables, emphasis is placed on linkages 
between variables 
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1.13 Idealization  
To idealize is to construct an abstracted model of the real system that will admit some 
form of mathematical analysis (Shigley and Mischke 1989). Most frequently, idealization 
refers specifically to the transformations that are applied to the design representation of a 
part, which is already an idealized version of the �real� or �physical� part in that the 
design representation is a model of the typical actual part Idealizations are applied to 
design information because most problems contain complexities that render numerical 
simulation difficult or impossible to analyze. Finn provides the following categorization 
of engineering idealizations1: 

1.14 Dimensional Reduction 
Involves reducing the degree of spatial analysis or time analysis. Spatial analysis may 
involve reduction from 3-dimensional to 2-dimensional or 1-dimensional analysis. Time 
analysis may involve reducing a transient analysis to a quasi-static or steady state 
analysis. 

1.15 Geometric Symmetries 
Involves removing redundant domains by identifying spatial symmetries and applying 
compensatory boundary conditions. 

1.16 Feature Removal 
Involves removing some engineering feature that is not expected to contribute 
significantly to the overall analysis results (for example a small hole or a fin).  

1.17 Domain Alteration 
Involves changing some aspect of the spatial domain so that the analysis is simplified (for 
example, modeling a thin aerofoil as a thin plate). 

1.18 Phenomenon Removal 
Involves the removal from analysis of complete phenomena based on the decision to 
ignore the effect of that phenomenon (for example, ignoring stress effects within the 
physical system). 

1.19 Phenomenon Reduction 
Applies to situations where a multi-component phenomenon exists and a particular 
component is removed is removed because its significance is judged to be of minor 
importance (for example, removing radiation analysis from a heat transfer problem). 

1.20 Phenomenon Idealizations 
Involves the use of mathematical expressions to describe the system phenomena. For 
example, in fluid analysis, a number of mathematical equation models are available to 

                                                 
1 Finn distinguishes between simplifications and idealizations. In the list below, he considers the first 
six operations simplifications and the last three idealizations. For the purposes of this discussion, a 
simplification will be considered as a type of idealization. 



Design Analysis Integration Lexicon 

4 

solve for flow analysis: parallel flow can be modeled using the full Navier Stokes 
equations or a Couette flow model. 

1.21 Boundary Condition Idealizations 
May involve applying a mathematical equation to model a boundary condition that does 
not perfectly represent the physical boundary conditions. For example, in heat transfer 
modeling, a non-ideal surface may be modeled as a black body or gray body surface. 

1.22 Material Idealizations 
generally involve the use of idealized material laws to model some complex material 
behavior. For example, modeling an expected non-linear material response using a linear 
approximation function. 

1.23 Synthesis 
Synthesis is the opposite of idealization; the act of �appearing as a material form or 
taking substantial shape�, that is, going from an abstract or ideal representation to a 
physical representation. Effectively, synthesis is performed in three steps: the first is to 
decide on the variables (primitive or complex) from the design representation of the part 
that are going to be populated with values. The second step is to assign values to these 
variables. The third step is to use this populated design representation to actually create 
or manufacture the physical part. The assignment of values to the design variables is 
normally based on the results of engineering analyses, but it could possibly be based on 
rules-of-thumb, experience or even arbitrary judgment.  

1.24 Product variables  
The design representation of a product is expressed exclusively in terms of product 
variables.  Idealized variables whereas analysis representations are expressed as a 
combination of product variables and idealized variables. 

1.25 Product idealization relations  
Product and idealized variables are related by product idealization relations.  When these 
product idealization relations are used to obtain idealized variables from product 
variables (that is, in their �forward� form) they are called idealizations. When they are 
used in the �reverse� direction, that is, to obtain product variables from idealized 
variables, they are called synthesis relations.  

In the context of design-analysis integration, idealization and synthesis characterize the 
bi-directional nature of the design-analysis process:  

1.26 Homogeneous Data Exchange 
Data exchange that occurs between systems that are similar in scope and semantics, 
hence mostly requiring syntactic translation of the data.  

1.27 Heterogeneous Data Exchange 
Is caused by the large gap in scope and semantics that exists between design and analysis 
representations, which requires a syntactic and a semantic transformation of the data 
being exchanged.  A major issue between design and analysis representations 
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1.28 Multi-Fidelity Heterogeneous Transformations  
The term Multi-Fidelity Heterogeneous Transformations can be used to convey this 
notion of different levels of detail of the models.  The following figure depicts the notion 
of multi-fidelity idealizations. 

Flap Link

Multi-fidelity
Idealizations FEA-Based

Tension Analysis

Formula-Based 
Tension Analysis

Simple Cross
Section

Detailed Cross
Section

Multiple
Uses

critical
cross
section

 
Figure 2 - Multi-Fidelity Analysis 

1.29 Object-oriented modeling 
Makes it possible to create physically relevant and easy-to-use components, which are 
employed to support hierarchical structuring, reuse, and evolution of large and complex 
models covering multiple technology domains. 

1.30 Non-causal modeling 
Modeling is based on equations instead of assignment statements as in traditional 
input/output abstractions. Equations do not specify which variables are inputs and which 
are outputs, whereas in assignment statements variables on the left-hand side are always 
outputs (results) and variables on the right-hand side are always inputs. Thus, the 
causality of equations-based models is unspecified and fixed only when the equation 
systems are solved (this is called non-causal modeling). Direct use of equations 
significantly increases reusability of model components, since components adapt to the 
data flow context in which they are used (in other words, they can be used with multiple 
input/output combinations of data). This generalization enables both simpler models and 
more efficient simulation. 

1.31 Explicit representation of idealization knowledge 
The transformations required to obtain the values of idealized attributes from design or 
product attributes are not explicitly defined anywhere. As a consequence, they end up 
buried inside the code of the analysis applications making it difficult to reuse or modify 
them. The APM Representation should provide the necessary constructs for defining 
idealized attributes or features of the part as well as the mathematical relations that define 
how these idealized attributes are derived from the �real� or �manufacturable� attributes 
of the part. These definitions should be formally captured as part of the analyzable 
product model itself.  
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1.32 Reusable idealizations 
Idealized attributes and product idealization transformations should be defined in such a 
way that they can be used by potentially more than one analysis application (in other 
words, be reusable).  

1.33 Multi-fidelity idealizations 
Different levels of precision by using more or less accurate idealizations of a feature. For 
instance, a coarse analysis may only require a simple approximation of a feature, whereas 
a more precise analysis would require a more detailed (and, consequently, more 
computationally-demanding) version.  

1.34 Late-bound operations 
Late-bound operations are designed to manipulate information without previous 
knowledge of the domain-specific structure of the data. It should be possible to reuse 
these operations in a range of application domains without having to modify or customize 
them.  

1.35 Product domain-independent 
Independent from any particular product domain or industry (for example, airplane 
structures, printed wiring assemblies, etc.). In other words, it should be generic. The 
constructs defined in this representation should not be expressed in terms of any 
particular domain. The APM Representation should serve as a �template� for creating 
domain-specific analyzable product models. 

1.36 Computer Interpretable Form 
Computer-interpretable language for defining analyzable product models. A computer 
program should be able to parse this definition and create a corresponding representation 
of the analyzable product model in memory that can be accessed and manipulated by 
analysis applications. This computer-interpretable language must be easy to understand 
by humans without extensive knowledge of its syntax. 

1.37 Product variable 
A variable that the designer would specify in order to fully define the product. product 
variables cannot be directly used in the analysis model (AKA: product parameter) 

1.38 Design synthesis 
Generate product information by adding detail to analysis output or transforming them.  
There may be two different types of synthesis activities 1) activities that modify the basic 
working principles of the design and 2) activities that actually generate more information 
and feature on the design side.  The design syntheses are typically under constrained 
relations. 

1.39 Complexity level 
Analysis models may be of varying complexity.  This is related to the simplicity or 
abstraction of the model.  For example, the model may be equations-based or may rely on 
complex finite element analysis.   
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1.40 Variables  
Variables are the input and the output of the analysis and design model.  They are used 
for exchange with other models. 

1.41 Subsystem  
 is another view of an analytical building block object that shows related variables in the 
object to fulfill a particular purpose.  A subsystem may be used in a graph of another 
object.  subsystems can be nested arbitrarily deep 

1.42 Scope 
The context in which the product parameter are valid.  A variable can be known in one 
subsystem and also in the other, but not be the same variables. 

1.43 Graph  

A triple ),,( ϕEVG =  where V and E are finite set and O is a function 

1.44 Simple Graph  
A graph whose edges are undirected, that does not have multiple edges between the same 
two vertices, and that does not allow edges from a vertex to itself (Rosen 1995)). 

2 COB SPECIFIC IMPLEMENTATION DETAILS 
The COB specific implementation details are organized in the context of MRA. 

Solution Method Model

ΨABB SMM

Analysis Building Block

Context-Based Analysis Model

SMMABB
ΦAPM ABB

CBAM

APM

4

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB
Solder Joint

Component

PWB

body3
body2

body1
body4

T0
body3

body2

body1
body4

T0

Printed Wiring Board (PWB)

Solder
JointComponent

Printed Wiring Board (PWB)

Solder
JointComponent

Analyzable
Product Model

3

2

1

 
Figure 3 �Multi-Representation Architecture 
Terminology and concepts are then presented for each specific type of COB, including 
CBAMs, ABBs, APMs, and SMMs. 

2.1 Constrained object representation 
The four main components are the COB Meta Information Model, the COB Protocol, the 
COB Definition Languages, and the COB Graphical Representations.   

2.2 Overview of COB Representation  
COB representation consists of the four main components. 
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COB
Representation

Definition
Languages

Meta
Information

Model

Graphical
Representations

Protocol

(section 4.2) (section 4.3)

(section 4.4)  
Figure 4 - COB representation components 
2.3 COB Definition Languages 
The COB Representation includes two definition languages called the COB Structure 
Definition language (COS language) and the  

2.4 COB Structure Definition Language (COS language) 
The COS language is used to define the structure of COBs, also known as a COS model.  
The COS model describes a domain-specific model and is considered to be a �template� 
of potentially many COI model.  The COS language is developed based on the general 
purpose STEP EXPRESS language (ISO 10303-11). EXPRESS is an object-flavored 
information model specification language that is developed in order to enable the writing 
of formal information models describing mechanical products.  EXPRESS is the one of 
the technologies that has been developed as part of the STEP standard for product data 
exchange.   

The EXPRESS language was extended and simplified to establish the COS language that 
is specifically tailored for design-analysis integration. 

To define attributes with symbols.  Analysis attributes used in relations are usually 
defined with symbols such as �L = k * ∆L� rather than �length = spring constant * 
deformation�.  

To represent relations between primitive attributes.  EXPRESS language provides similar 
capability with WHERE rule, but that is for conformance checking between primitive 
attributes and is not suitable for calculation of unknown variable values in a constraint 
graph base way. To define and categorize attributes, relations, and cobs specifically 
tailored for design and analysis integration (DAI).  For example, idealized attributes. For 
flexibility in defining future extensions tailored to DAI. 

The main elements of the COB Structure (COS) are schema, cob sets, cobs, and cob set 
links.  The cobs, like entities in EXPRESS, are the building block of COS. A COS is built 
from cobs, like entities in EXPRESS, and each cob (except primitive ones) contains 
attributes to represent its essential properties and relations to specify mathematical 
constraints among its primitive attributes and sub attributes. An attribute declaration 
consists of the name and data type of the attribute.  The data type specifies the type of 
value that the attribute has when it is instantiated.  It may be a pre-defined primitive cob 
(REAL or STRING), a complex cob (a cob that has attributes and/or relations), or an 
aggregate where members are primitives or complex cobs. 
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2.4.1 COB Relation 
A relation declaration consists of a relation identifier (name) and a mathematical 
expression. A relation is usually constraint-based (i.e., multi-directional) and used to 
calculate unknown variable values. 

2.4.1.1 Extended Aggregate Relation 
A relational expression can be constructed with aggregate instance(s).  For example, the 
following defines a potential mathematical relation between the aggregate elements in 
aggregate primitive cob a4 from cob a above 
r3: “<a4[0]> == <a4[1]> * a4[2]”; 

A relation may include the following aggregate operations the utilize all aggregate 
members: Summation, Maximum, or Minimum.  For example, the following relation: 
r3: “<a1> == <a4.SUM>”; 

defines that the summation of the values in primitive aggregate a4 must be equal to a1 no 
matter how many instances of a4 are provided.  Also, the aggregate operation can be 
defined among elements in a complex aggregate such as 
r4: “<a1> == <a6.MIN[b1]>”; 

This relation defines that the minimum of value of the attribute of all members of b1 in 
complex aggregate a6 must be equal to a1.  These extended relations with aggregate 
operations so that they are now multi-directional. 

2.4.1.2 Uni-directional Relation (ONEWAY) 
When a relation is declared ONEWAY, the attribute in its left-hand-side will always be 
output and the attributes in its right-hand-side are inputs. For example, consider the 
following relation.  
r5: “<a> == <b> + <c>” ONEWAY; 

It means a is always output and b and c are always inputs.  This capability has been 
developed primarily to support a special kind of uni-directional relation that wraps an 
external tool to obtain a variable value of output.  See the following example. 
“<e>==CobExternalToolFunction[T_name,F_name,{<a>,<b>,<c>}]” 
ONEWAY;  

The first string between brackets ([ ]) indicates the external tool name, and the second 
string indicates the external file name.  The variables listed between curly-brackets ({ })  
are input variables.  This particular relation runs the finite element tool (FE), called 
"T_name" to determine variable value e with a FE model created with a pre-prepared 
parameterized template defined in the file called "F_name" with input values of a, b, and 
c.  The left-hand-side variable is always output, as tool like FE ANSYS typically have a 
fixed natural output direction (e.g., calculating stress given material, geometry, and loads 
as inputs). 

2.4.1.3 Conditional Expressions 
Another extension is three "if" control statement relations.  Their forms are 
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"IF_STRING (condition): relation" 

"IF_TYPE (condition): relation" 

"IF_AGGREGATE_SIZE (condition): relation". 

The condition is a Boolean expression.  If condition is true, then is included in the 
constraint network.  Relational operators are used in conditions.  IF_STRING utilizes the 
"Equal to (==)" operator to check the value of string-primitive attributes.  For example, 
"IF_STRING (ball_type = grid): <number_of_balls> == <balls_in_x> * <balls_in_y>" 
checks the string value of ball_type attribute.  If its value is grid, the relation followed by 
the condition is included.  IF_TYPE also uses "Equal to (==)" operator to check complex 
cob's types.  For example, "IF_TYPE (package == ebga): "mold.height == 
package.height" checks if the type of the complex attribute package is ebga.  
IF_AGGREGATE_SIZE may use "Equal to (==)", "Greater than (>)", "Less than (<)", 
"Greater than or equal to (>=)", or "Less than or equal to (<=)" operators.  It checks the 
size of aggregates (i.e., the number of members in an aggregate). 

2.4.1.4 Inherited Relation Redefinition 
When a cob is a subtype of another cob, the subtype inherits all attributes and some 
relations from its supertype.  However, relation will not be inherited when its relation 
name in the subtype is the same as that in its supertype, thus providing overwriting 
capability of relations.   

2.4.2 COB Sets 
Collections of similar cobs are grouped into cob sets within a given cob schema.  Each 
cob set contains a root cob to specify a root of the hierarchy tree.  How cobs in the 
different cob sets are related is defined in link definitions.  The cob sets and their links 
construct the top building block called schema.  The following example shows the 
concepts.  Schema test has two cob sets set_a and set_b with root cobs, a and b, 
respectively.  Those two cob_sets are linked together to form a linked cob with the 
equality relation define between LINK_DEFINTION and END_LINK_DEFINTION.  
Enhanced Structure Reusability (USE_FROM) 

2.5 COB Instance Definition Language (COI language).   
The COI language is used to define an instance of the COS, also known as a COI model.  
A COI model is a collection of COBs that describes a domain-specific data.  A COI 
definition is stored in a text file known as a COI file.  The COB Instance Definition 
language (COI) has similar capability with the general-purpose STEP Part21 File format 
(ISO 10303-21).  Both COI and STEP Part21 may be used to define constrained objects. 
However, STEP Part21 is developed for the purpose of exchanging data among computer 
systems and it lacks in friendliness to humans: lacks in readability, and creation of data 
files is tedious.  Thus, the COI is developed to overcome such shortcomings.  The main 
elements of a COB Instance (COI) model are an instance of root COB and a list of 
primitive COBs belonging to the root COB.  The COI definition syntax starts with DATA 
syntax and ends with END_DATA.  More than one COI may be defined in the same COI 
file.  Each COI is enclosed between INSTANCE_OF and END_INSTANCE keywords.  
The INSTANCE_OF keyword is followed by a root cob instance name.  Between 
INSTANCE_OF and END_INSTANCE, there is a list of definitions describing cob 
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primitive attribute values.  Note that a COI definition does not require that all primitive 
attributes defined in its COS be listed here; the only required attributes are the inputs and 
the primary desired output. 

2.6 COB Graphical Representations 
These visual forms aid human interpretation of the COB Representation concept. Both 
COS and the COI have graphical representations to aid human interpretation of the COB 
models.  Each of these graphical representations conveys a certain aspect of the COB 
better than the others.  For example, the object relationship diagram (EXPRESS-G) 
shows the generalization and specialization nature of objects, but it does not depict the 
mathematical relations among their attributes; mathematical relations can be observed 
from a constraint schematic diagram. The main COB graphical representations are: 

• Object-Relationship diagram 

• Constraint network diagram  

• Constraint schematic diagram 

2.6.1 Basic Object-Relationship (EXPRESS-G) Diagram Notation 
An object-relationship diagram uses EXPRESS-G, which is part of the STEP standard 
(ISO 10303-11 1994) for the graphical representation of the EXPRESS lexical language.  
The object relationship diagram shows �the is-a relationship� in bold lines and �the part-
of relationship� in thin lines.  Entity is used synonymously with COB. 
 

A 
A is entity (class)
 Instances of A are objects

A 
A is a simple type 
( BOOLEAN, LOGICAL, BINARY, 

 NUMBER, INTEGER, REAL, STRING)
a1 

A B a2 A has two attributes, a1 and a2, that
 are both type B

A B a1 

S[1;?] 
A has an attribute, a1, that is
 a Set of 1 or more entities of type B

A 

C B 

A is a supertype of B and C.
 (B and C are subtypes of A)

Unofficial extensions:
A is a multi-level entity that has two level

 a1 is type B. a2 is type C.
A 

B 
a2 

a1 

C  
2.6.2  Basic Constraint Network Diagram Notation 
A constraint network diagram is used to represent how COB attributes and relations are 
interconnected.  This Diagram is useful for the following reasons: 
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• To visualize how a change in an attribute value affects the other attribute values. 

• To determine which relations should be used to build the system of equations to solve 
for an attribute value. 

• To figure out possible input/output combinations for attributes. 

• To visualize which relations are multi-directional (MULTI-WAY) and which 
relations are uni-directional (ONEWAY). 

R1
R2

R3R4

A.a1

A.a1

A.a3

A.a2

A.a6.c2

A.a6.c1

A.a4.b2A.a4.b1

A.a5

Attribute (full attribute name)

Relation

ONEWAY connector

MULTI-WAY connector

 
A "full attribute name" is obtained by concatenating the attribute from the root cob to the 
terminal attribute in its hierarchy tree.  

A MULTI-WAY connector (default type of connector) is for a relation that does not 
define which attributes are inputs or outputs.  For example if the �R4� relation is stated as 
�A.a1 = A.a2 + A.a3�, the relation has three possible input/output combinations: �A.a1� 
is output and �A.a2� and �A.a3� are inputs, �A.a2� is output and �A.a1� and �A.a3� are 
outputs, and �A.a3� is output and �A.a1� and �A.a2� are inputs. 

A ONEWAY connector is for a relation that is defined with a specified input/output 
combination.  For example if the �R1� relation is defined as a ONEWYA relation where 
�A.a1 = A.a2 + A.a3�, then �A.a1� is always output and �A.a2� and �A.a3� are always 
inputs. 

A constraint network is an alternate way to represent COB Relations. In a constraint 
network, variables and relations are represented as vertices of a simple graph. Each node 
in a constraint network may be either a variable or a relation. Variables can only be 
connected to relations and relations can only be connected to variables. This 
representation allows to determine what variables are affected by the change in value of a 
given variable, or what relations are required to calculate the value of a given variable.  
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2.6.3 Basic Constraint Schematic Diagram Notation 

variable subvariable
subsystem

equality relation

relation

s

a b

dc

a

b
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c
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s

r1
r1(a,b,s.c)
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[1.2]

[1.1]
option 1.1

f
f = s.d

option 1.2
f = g

option category 1

gcbe −=
r2

h of cob type  h

w
L [ j:1,n]

wj
aggregate c.w

element wj

 
Figure 5 - Constraint Schematic-S Notation (COS) 

2.6.4 Additional Constraint Schematic-I Notation (COI) 

200 lbs

30e6 psi

 

X

Relation r1 is suspended
X r1

100 lbs

Equality relation is suspended 

a

b

c

100 lbs Primary Input
(Input 10 lbs)

a

Intermediate Input
(Input 10 lbs)

Intermediate Output
(Result = 30e6 psi)

Primary Output
(Result = 200 lbs)
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2.6.5  Extended Constraint Graph/Network -S Diagram Notation 

A R

S
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R

R

R

R
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R
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R
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Figure 6. COB Modeling Views 
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Figure 7 - Object Relationship Diagram (EXPRESS-G). 
The constraint network shown is a "flattened" view of the constraint schematic view 
explained next. 
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spring2.
end

spring2.
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bc2
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Figure 8 - Constraint network-S diagram 
A COB subsystem view, where a high-level object is wrapping one or more lower-level 
objects and/or other sub-systems, may be included in a COB constraint schematic2.  It is 
an abstraction view of a COB that hides unnecessary details from users.  The full 
constraint network is present and active in subsystems no matter which variables are 
shown on a subsystem view.  A line connecting attribute(s) means equality and the 
constraint schematic shows only system level relations that are defined in the COB 
structure definition of the two-spring system. 

                                                 
2 Constraint schematic diagrams were first introduced in [2] to represent Analysis Building Blocks and 
Product Model-Based Analysis Models. 
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Figure 9  Spring -subsystem-S view 
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Figure 10 - Two-spring system - constraint schematic-S diagram (with spring) with 
constraint network-S 
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Figure 11 - Figure Spring - constraint schematic-S 

Spring System

       spring2

Pspring1

u1

u2

 
Figure 12 - Two-spring system - subsystem-S view 
As mentioned before, in the constraint network lines are used to represent connection 
between relations and their related attributes. For example, a multi-way relation r1, <a> 
== <b>+<c> is depicted as below.  
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R1
a

c

b

 
Figure 13 - Multi-way relation: constraint network-S 
For a special kind of relation, a uni-directional (oneway) relation, the lines connecting 
attributes and relations are replaced with arrows to shows data flow directions.  For 
example, consider a uni-directional relation, <a> == <b> + <c>.  If a is output and b and 
c are inputs, its constraint network is depicted as below. 

R1
a

c

b

 
Figure 14 - Oneway relation: constraint network-S 
The Graphical Representations mentioned in this section so far deal with the structure of 
COBs.  Instance of COBs may be viewed with the Constraint Network Diagram-I and/or 
Constraint Schematic Diagram-I.  Adding variable values in schema-level diagrams 
creates instance-level diagrams.  The values enclosed by single-line boxes are inputs.  If 
the input is assigned at the COB Structure level, the variable value has an underline (e.g., 
r1 relation in the two-spring system example where zero is assigned to spring1.start).  
Values enclosed by the double-line box are the primary desired outputs.  Values without 
boxes are intermediate outputs whose values are found during the determination of the 
primary desired output(s).   
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a.  Constraint network-I diagram 
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b.  Constraint schematic-I diagram 
Figure -15 COB instance diagrams for a two-spring system exampleCOB Protocol  
2.7 COB Meta Information Model  
The information model for the COB structure and the COB instance and deals with 
generic aspect of the COB representation.  An instance of the COB Meta Information 
Models defines the COS and COI and they can be accessed via COB Protocol that allows 
interpretation of data interactively.   
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Figure 16 - The COB meta information model with other components 
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2.8 COB Protocol 
This section describes the major operations that compose the COB Protocol.  These 
operations are called late-bound because they are designed to access and manipulate the 
COB Representation without previous knowledge the definition of domain-specific COS 
entities. 

The following is a typical sequence of high-level tasks performed by a typical COB-
based application (an application that manipulates COB using operations defined in the 
COB Protocol). 

1) COB Creation 

2) COB Usage 

3) COB Storage 

COB Definition
Files

Constraint
Solver

COB 
Structures

COB
 Instances

Constraint Network

COB based
Custom Tools

Creation
�  COS
�  COI
�  CNT

COB Usage
�  solve
�  change I/O
�  change value
�  activate relation

�..

Storage

Constrained Objects (COBs)

Client
Application

M

COB Protocol

Client
Application

M
Client

Application
M
Client

Application
1

 
Figure 17 - High level COB protocol operations 
2.8.1 COB Creation 
The COB Protocol must provide a way to create cobs.  First, the COS must be created in 
order to make available meta data that correspond to the structure of COBs (the domain�
specific model template).  This is done by parsing a COS model.  The COS model must 
be linked according to what is specified by the COB Source Set links.   
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set_a

cob_b b1

b2
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R

 
Figure 18 - Source set link example - before link: extended constraint graph -S 
The COS model has two source sets (set_a, and set_b) and one source set link (defined 
between the keywords LINK_DEFINITIONS and END_LINK_DEFINITIONS in the 
definition file).  As illustrated in, the source set link links attribute a1 of domain cob_a in 
set_a COS with attribute b1 of domain cob_b in set_b COS. . 

cob_a a1

a2

a3 R

S

set_a

cob_b b1

b2

S

R

set_b

R

link

 
Figure 19 - Source set link example - connecting: extended constraint graph-S  

Scob_a a1

a2

a3 R

cob_b
b1

b2 RR

 
Figure 20 - Source set link example - after link: extended constraint graph-S 
2.8.1.1 COI Creation 
Second, one or more COI models must be created to make the domain-specific data 
(instances of the COS) accessible.  This is done by parsing a COI file describing a 
particular model using the COI language.  The COI also must be linked.  This operation 
is similar to linking the COS definition described previously.  The difference is that 
instead of linking attributes of COB domains, this operation links instances of these 
attributes. 
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2.8.1.2 Constraint Network Creation 
Next, an instance-based constraint network for each COI is created so that it can be used 
to construct simultaneous equations to solve unknown variable values.  The relations of 
each complex cob are added to the constraint network.  Each cob is identified with its full 
attribute name so that it will be unique within the constraint network.  For example, 
length of spring in spring1 and spring2 instances are defined as spring1.length and 
spring2.length.  . 

As mentioned before a COI model does not need to contain all COBs defined in its 
corresponding COS model: all that is required are primitive attributes that are input and 
primary desired output3.  This is because intermediate COIs, connected to these defined 
COIs at the constraint network level, will be automatically created during constraint 
network construction.   

Relations with aggregate operations (SUM, MAX, and MIN) are instantiated/expanded 
based on aggregate instances when they are added to a constraint network.  A relation 
such as a = b.SUM, where b is a real-primitive aggregate, is expanded to a = b[0] + b[1] 
+ b[2] if b has three aggregate elements.  A relation with MAX and MIN aggregate 
operations such as a = b.MAX it also instantiated in similar way.  For example, if there 
are three b aggregate elements, the relation is instantiated as a = MAX[b[0], b,[1], b[2]].  
This relation is also multi-directional.  For example, if a is known to have a value of 10.0 
and b[0] and b[1] are known to already be less than 10.0.  Then b[2] will be set equal to 
10.0.  Similar instantiation is performed for the MIN operator. 

b[0]

a
SUM

b[1]

b[2]

 
Figure 21 - Constraint network-S for �a = b.SUM� 
2.8.2 COB Usage 
2.8.2.1 Query 
After constructing the cobs, the COB Protocol must provide a way to query information 
about the domain-specific instances (COIs) data.  Any attribute of an instance is 
accessible via the get method with the full attribute name as its argument4. The full 

                                                 
3 Except for aggregate instances.  For example, a relation <a> = <b.MAX>  to be correctly added to 
constraint network at least one instance of b should be defined. 
4 A strong typed programming language such as Java needs pre-declared variable types at compile time.  
In this case, these protocol operations must be modified to specify their return type (i.e., a get attribute 
becomes get real attribute ) 
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attribute name is obtained by concatenating the attribute names all the way up in the 
hierarchy tree to the cob that is receiving this method. 

There are two special query methods for primitive attributes (REAL and STRING) - get 
value and set value.  Sending the method to a primitive cob or a non-primitive cob with a 
full attribute name as its argument permits access to its primitive values. 
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a5 c2
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b1
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Figure 22 - An example COS: extended constraint network 
2.8.2.2 Solve 
The unknown variables of a domain-specific instance can be solved via the solve 
operation that is available in root cob.  Unknown variables trigger creation of a series of 
simultaneous equations from the constraint network to be solved. Pseudocode of this 
operation is in Appendix F.  The number of simultaneous equation sets sent to the 
constraint solver is equal to the number of sub-graphs in the constraint network5. 

                                                 
5 If the constraint network contains ONEWAY uni-directional relations, the number of equation sets sent to 
the constraint solver may be more than the number of sub-graphs. 
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Figure 23 - Graphical overview of the "Solve" constraint processing algorithm (with 
multi-directional relations) 
When a ONEWAY uni-directional relation is included in a constraint network, special 
consideration is necessary to solve unknown values.  Since a ONEWAY relation is not 
inversable, it is necessary to check whether its all inputs are known or not.  If all input 
variable values of the ONEWAY relation are known, the corresponding simultaneous 
equation set is constructed in the same way as the simultaneous equations with only 
multi-way relations.  If any one of the input variable values is unknown, more than one 
simultaneous equation set may be constructed from a constraint network sub-graph.   

The R2 relation is ONEWAY whose output is A.a2 and whose inputs are A.b1, A.b2, and 
A.b3.  Since all inputs of the ONEWAY function do not have values in this instance, the 
ONEWAY relation and other relations connecting exclusively to its output are not used 
to construct the first simultaneous-equation set.  If the result from the first equation set 
determines the values of all inputs to the ONEWAY relation, the second set of 
simultaneous equations is created from the ONEWAY relation and any other relations 
connecting to ONEWAY's output.  In this example, all ONEWAY's inputs, A.b1, A.b2, 
and A.b3, were solved in the first equation set.  Thus, the second equation set is 
constructed from the ONEWAY relation, R1, and the R2 relation which connects to the 
ONEWAY output, A.a2.  After the second equation set is solved, the values of A.a1 and 
A.a3 are determined. 
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Figure 24 - Graphical overview of the "Solve" constraint processing algorithm (with 
one ONEWAY relation) 
Issuing set value with a value argument changes the value of real attributes in COBs.  A 
Boolean flag called isSolved for the COI that contains the reset COB becomes false and 
the COI can be resolved with the solve operation. 

2.8.2.3 Change I/Os (data flow direction) 
The data flow direction of COI can be changed.  To change a COB real attribute data 
flow from input to output, set as output needs to be issued to the COB.  To change a COB 
real attribute data flow from output to input, set as input needs to be issued to the COB.  
Then, the value of the COB should be set with set value operation.  In both cases, a 
boolean flag called isSolved for the COI that contains the reset COB becomes false.  The 
unsolved COI can be resolved with the solve operation.   

2.8.2.4 Activate/Dis-activate Relations 
Relations may be relaxed (dis-activated) or activated.  Relaxing a relation temporarily 
removes it from its constraint network.  Activating a relation returns it to its constraint 
network.  In order to relax a relation currently active, set active (false) must be issued.  
To activate a currently relaxed relation, set active (true) must be issued.  

2.8.3 COB Storage 
The values and directionality (input/output) of primitive COB attributes can be modified 
during the utilization of COI, so that the COB Protocol must provide a way to save the 
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new data.  A COI model may be saved in a linked or unlinked form.  The linked COI 
conforms to the linked version of COB schema that has one cob-set merged from two or 
more cob sets.  A linked COI can be separated unlinked COIs that conform to the original 
individual cob sets of the COB schema.  COB LIBRARIES 

2.9 WIRTH SYNTAX NOTATION FOR COB DEFINITION LANGUAGES 
The syntax of COB Definition languages is presented in this subsection using Wirth 
Syntax Notation (WSN), which is also used to define the EXPRESS language.  The COB 
definition language uses syntax defined in EXPRESS as much as possible.   

EXPRESS identification numbers follows the EXPRESS defined syntax.  COB specific 
syntax is preceded by �cob_�.  The following is an example of EXPRESS syntax 
compared to COB-specific syntax. 

EXPRESS syntax 
245 named_type = entity_ref | type_ref. 

COB specific syntax 

    cob_named_type = cob_id . 

The notation for WSN defined in itself is follows (an excerpt from [24]). 

syntax  = { production } . 

production  = identifier �=� expression �. � . 

expression  = term { �|� term } . 

term  = factor { factor } . 

factor  = identifier | literal | group | option | repetition . 

identifier  = character { character } . 

literal  = � � � � character { character } � � � �  

group  = �(� expression �) � . 

option  = �[� expression �] � . 

repetition  = �{� expression �}� . 

The important conventions are listed below.  

• Equal signs �=� indicate �is defined as�.  The element on the left defines the 

combination of the elements on the right. 

• Vertical lines �|� indicate that only one of the terms in an expression should be 

chosen. 
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• Curly brackets �{ }� indicate zero or more repetitions. 

• Square brackets �[ ]� indicate optional terms. 

2.10 Basic language elements 
2.10.1 Character classes 
2.10.1.1 Digits  
COBs use the Arabic digits 0-9. 

2.10.1.2 Letters  
COBs use the upper and lower case letters of the English alphabet.  

2.10.1.3 Special Characters 
The special characters, which are neither digits nor letters, are used mainly for 
punctuation and operators.  

2.10.2 Remarks 
A remark is used for documentation and is interpreted by a COB language parser as 
whitespace. Any character in the COB character set and the new line character may be at 
the start and end of an embedded remark.  Embedded remarks can span several lines.  
Embedded remarks can not be nested. 

2.10.3 Reserved words 
2.10.4 Identifiers and Interpreted Identifiers 
Identifiers are used for any user-defined name used in COB languages.  The first 
character of an identifier should be a letter.  The remaining characters, if any, may be any 
combinations of letters, digits, and the underscore character.  An identifier can not be the 
same as a COB reserved word. The interpreted identifiers are known to have a particular 
meaning. 

2.11 Literals 
A literal is a constant value used in the user-defined primitive data type values.  The COB 
language currently supports Real and String literals. 

2.11.1 Real literal 
A real literal represents a value of a real data type composing a mantissa and an optional 
exponent. 

2.11.2 String literal 
A string literal represents a value of a string data type composing a sequence of 
characters from the COB character set enclosed by double quote marks ( � ). 

2.11.3 Unknown literal 
An unknown literal represents a value of a real data type that is unknown. 
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2.12 COB Instance Definition Language ( COI ) 
The COB Instance Definition Language (COI) is used to define the instances/objects of 
one or more COB structures. 

2.12.1 Data  
2.12.1.1 Simple data (cob_simple_data) 
The syntax for the simple data include: 

• cob_real_data = Real literal . 

• cob_string_data = String literal. 

• cob_unknown_data = unknown literal . 
2.12.1.2 Declaration 
A data declaration defines a common scope for a collection of related cobs and other data 
type declarations. 

2.12.1.3 Instance 
Defines an instance of data, the syntax is the following: 

• cob_instance_body = INSTANCE_OF cob_root_instance_id �;� cob_attribute_data 
END_INSTANCE �;� . 

• cob_root_instance_id = simple_id . 
2.12.1.4 Attribute 
Defines the attributes: 

• cob_attribute_data = cob_an_attribute_data {cob_an_attribute_data } . 

• cob_an_attribute_data = cob_full_attr �:� cob_simple_data . 

• cob_full_attr = cob_attr { �.� cob_attr } . 

2.13 COB Schema Definition Language (COS) 
The COB Schema Definition Language (COS) is used to define a COB schema 
consisting of one or more COBs in one or more cob-sets.   

2.13.1 Data types 
Every attribute has an associated data type. 

2.13.1.1 Simple data type ( cob_simple_types ) 
Simple data type is a basic data type which can be used to create more complex types.  
The COB language provides Real and String simple data types. 

2.13.1.2 Aggregate data type ( cob_aggregate_types ) 
The domain of aggregate types have the collection of  base_data_type.  The COB 
provides the definitions of LIST aggregate data type.Rules and restrictions: 
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• The bound_1 expression should be an integer value greater than or equal to zero or 
one. 

• The bound_2 expression should be an integer value greater than the bound_1 
expression or indeterminate ( ? ) value. 

• Conformance checking between the bounds and the instance is not supported. 
2.13.1.3 Named data type ( cob_named_types ) 
The named data type is established by COB declarations.   

2.13.2 Declarations 
2.13.2.1 Schema 
A SCHEMA declaration defines a common scope for a collection of related cobs and 
other data type declarations. 

2.13.2.2 COB Declarations 
A COB declaration creates a cob data type and declares an identifier to refer to it.  
Attributes represent a characteristic of a cob and may be associated with a value in each 
cob instance.  A relation clause represents required relationships among real attribute 
values for a given instance.  Rule and restrictions: 

• Attributes defined in the cob declaration should be unique with in the declaration. 

• A subtype should not declare an attribute with the same name as an attribute of its 
supertype (i.e., redeclaration of attribute is not supported). 

• A subtype should not declare a relation having the same identifier as a relations of 
one of its supertypes, except when a subtype redeclares redefines a relation inherited 
from one of its supertypes. 

2.13.2.3 Attribute (cob_attr) 
The attributes of cob data type represent a cob�s essential character.  An attribute 
declaration defines a corresponding relation between the cob data type and the data type 
reference by the attribute. 

In COS, an attribute may be defined together with its symbol. The symbols specified in 
COS attribute definitions can include special characters (e.g., Greek letters) defined in the 
ISO 9573-13 character set standards.  One online reference for this standard is available 
in Chapter 6 of the MathML document (see, for example group ISOGRK3 for Greek):  

2.13.2.4 Relation (cob_relation_clause) 
Every mathematical relation (math_expr) should refer to primitive attributes declared 
within the cob or terminal-primitive attributes belonging to the cob. The cob relation 
clause, if present, should be proceeded by the cob specific relation clause. 

2.14 Subtypes ( cob_subtype ) 
The specification of cobs as subtypes of other cobs is allowed by COB language, where a 
subtype cob is a specialization of its supertype.  This establishes an inheritance 



Design Analysis Integration Lexicon 

29 

relationship between the cobs in which the subtype inherits the properties (attributes and 
relations) of its supertype. Rules and restrictions: 

• A subtype can have only one supertype. 

• A supertype may have more than one subtype. 

• A cob can not declare an attribute with the same as an attribute inherited from its 
supertype. 

• Redeclaring of inherited attributes is not allowed. 

• All attributes in a supertype are visible to its subtypes.   

• Relations in supertype are visible to its subtypes when the relation name in a subtype 
is not used to re-declare (redefine) that relation for usage in the subtype. 

2.15 Analysis-Oriented Product Model (AOPM) 
An abstracted view of the design-oriented product data that is more �appropriate� for 
engineering analysis. It contains entities whose names, attributes and structure are more 
suitable for use by analysis models, data that is used by the analysis models, which is a 
subset of all the data generated by the design tools; and it supports idealizations of the 
design data that can be shared by multiple analysis models. 

2.16 Product model (PM) 
The representation of the product that contains the information over the life of the 
product.  The information may include geometry, BOM, assembly, and test instructions 
to name a few. 

3 ABB SPECIFIC TERMINOLOGY 
3.1 Analysis Building Block (ABB) 
An information model that has a defined structure and operations.  Can be thought of as a 
general template.  An ABB consists of a primary partition and a collection of option 
categories. 

3.2 Generic ABB 
Product specific ABBs contain associativity and are called PBAMs.  PBAMs deal 
directly with the detailed design information 

3.3 Product Specific ABB 
For example, the complex structure and nature of the spring may be simplified from to 
compute the k value for the spring based on material properties and geometry.  The 
PBAM model can be built from ABBs including primitive, systems, and other PBAMs 

3.4 Analytical primitives  
A type of ABB that is used to represent the basic analysis concepts.  The specific product 
information is not included in these representations. 
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3.5 Analytical system  
An ABB that is a collection of analytical primitives.  The primitives themselves are also 
ABBs.  (Note: Product information is not included in the analytical system.) 

4 APM SPECIFIC TERMINOLOGY 
4.1 APM Instance 
The APM is actually populated with instances; it is called an APM Instance,  

4.2 Analyzable Product Model (APM) 
Analyzable Product Model is a container for the all APM Source Sets and APM Source 
Set Links that define an analysis-oriented view of a given product type. In other words, 
the APM provides a single point of entry to all the domains, attributes (product and 
idealized) and relations that constitute an analyzable model of the product type. A given 
product type may have more than one APM 

4.3 APM Information Model 
The APM Information Model is a formal engineering representation, specifically tailored 
to analysis, whose primary goal is to facilitate design-analysis integration. It contains the 
fundamental constructs used to define analyzable product models. It also provides a basis 
for the rest of the APM Representation components presented in the remaining sections 
of this chapter. 

4.4 APM Domain Instance 
APM Domain Instances are used to define instances of an APM Domain. There is one 
subtype of APM Domain Instance corresponding to each subtype of APM Domain.  

4.5 APM Primitive Attributes 
They are grouped into product and idealized. Product APM Primitive Attributes belong to 
the physical or design description of the product. They are usually defined in one of the 
original source sets from which the linked APM was built. 

4.6 Supertype_domain  
Provides the means for defining inheritance hierarchies between APM Object Domains. 
Following the object-oriented paradigm, a given APM Object Domain odi inherits the 
attributes and relations of its parent supertype_domain.  

4.7 Set of APM Complex Domains 
The sets of APM Object Domains and APM Multi-Level Domains are joined to form the 
Set of APM Complex Domains 

4.8 APM Attributes 
APM Attributes are used to define APM Complex Domains.  There are five types of 
APM Attributes, according to their domains: 

1. APM Object Attributes; 

2. APM Multi-Level Attributes; 
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3. APM Primitive Attributes; 

4. APM Primitive Aggregate Attributes; and 

5. APM Complex Aggregate Attributes.  

4.9 APM Domain Instances 
An APM Domain Instance is simply a particular instance of a given APM Domain. There 
are five types of APM Domain Instances, according to the domains of which they are 
instances:  

1. APM Object Domain Instances;  

2. APM Multi-Level Domain Instances; 

3. APM Primitive Domain Instances;  

4. APM Primitive Aggregate Domain Instances 

5. APM Complex Aggregate Domain Instances.  

4.10 APM Object Domain Instance 
APM Object Domain Instance contains a list of instances; each instance in this list 
corresponding to an attribute of the domain being instantiated. These instances are, in 
turn, APM Domain Instances as well.  An APM Domain Instance ii is an instance of an 
APM Domain dj (denoted ii Îi dj) when the domain of ii equals dj. 

Individual APM Object Domain Instances are grouped to form the Set of APM Object 
Domain Instances, OI, as follows: 

4.11 APM Domain Sets and APM Source Sets 
An APM Domain Set provides a way to group APM Domains according to any arbitrary 
criterion. When an APM Domain Set is populated with instances it is called an APM 
Domain Set Instance. An APM Domain Set Instance is defined as follows: 

4.12 APM Source Set 
An APM Source Set is an APM Domain Set whose domains {d1 , d2 , � , dn } are 
populated with instances coming from the same source or data repository. 

4.13 APM Source Set Links 
APM Source Set Links specify when and how instances from different source sets in the 
same APM should be joined (or �linked�) in order to obtain a single set of instances.   An 
APM Source Set Link is defined by specifying the following information: two different 
source sets (belonging to the same APM), a key attribute in each set, a link condition, an 
insertion attribute in the first set and an inserted attribute from the second set. The key 
attributes must be primitive attributes that belong to the sets being linked.  
4.14 APM Product Attributes 
An APM Primitive Attribute is an APM Product Attribute if it belongs to the physical or 
design description of the product.  APM Product Attributes can usually be measured with 
an instrument directly on the product or perceived by the senses. Examples of product 
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attributes are the length of a plate, the diameter of a hole, the weight of a part, the 
coordinate of a point, and the distance between two features.  

4.14.1  APM Essential Product Attributes  
An APM Product Attribute is an APM Essential Product Attribute if it is part of the set of 
minimum and necessary attributes to manufacture the part. APM Essential Product 
Attributes make up the �manufacturable� description of the product.  

4.14.2 APM Redundant Product Attributes 
An APM Product Attribute is an APM Redundant Product Attribute if it is not an APM 
Essential Product Attribute.  The decision of which attributes are essential and which 
redundant is, in general, arbitrary. For example, if a part has three lengths L1, L2 and 
Ltotal, and these lengths are related by the expression �Ltotal = L1 + L2�, then any two of 
the three lengths may be chosen as essential and the third will automatically be 
redundant. Despite being redundant, APM Redundant Product Attributes are often 
defined to add expressiveness to the description of the product. 

4.15 APM Idealized Attributes 
An APM Primitive Attribute is an APM Idealized Attribute if it belongs to the idealized 
description of the product. Idealized Attributes are fictitious in nature. In other words, 
these attributes are �made up� by the analyst, based on his or her experience, and they 
usually cannot be physically measured on the product, since they do not actually exist. In 
general, idealized attributes are the result of simplifying or transforming product 
attributes using heuristic knowledge. Examples of Idealized Attributes are the �critical� 
area of a plate, the �effective� length of a link, and the �lumped� coefficient of thermal 
expansion of a multi-layer PWB. Idealized Attributes are often needed for analysis 
because most analysis models are expressed mathematically in terms of idealized 
attributes of the product (or in terms of a combination of product and idealized 
attributes). 

4.16 Environmental attributes  
Environmental attributes describe the environment in which the part performs at a given 
point in time as well as its boundary conditions. Applied loads and temperatures fall in 
this category.  

4.17 Behavioral attributes 
Behavioral attributes describe the behavior of the part when it is subjected to these 
environmental conditions. They are normally considered the outputs of the analysis 
models. Common examples of behavioral attributes are deformations and stresses. 

4.18 APM Relations 
APM Relations define how APM Primitive Attributes are mathematically related. An 
APM Relation is defined as follows: 
ri = ( relation_name , { pa1 , pa2 , … , pan } , relation ) 

4.18.1 Set of APM Relations  
Individual APM Relations are grouped to form the Set of APM Relations, R, as follows: 
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R = {r1 , r2 , … , rn } 

APM Relations can be divided into APM Product Relations and APM Product 
Idealization Relations.  

4.18.2 APM Product Relation 
An APM Relation is an APM Product Relation if all the primitive attributes in the list of 
related attributes {pa1 , pa2 , � , pan } are APM Product Attributes. 

4.18.3 APM Product Idealization Relation 
An APM Relation is an APM Product Idealization Relation if any of the primitive 
attributes in the list of related attributes {pa1 , pa2 , � , pan } is an APM Idealized 
Attribute. 

5 SMM SPECIFIC TERMINOLOGY 
The Solution Method Models (SMM) represent low-level, solution-specific methods.  
SMMs combine inputs, output, and control for a single type of analysis solution.  The 
SMM is a wrapper of the necessary information to complete an analysis solution.  The 
SMMs serve as tool agents to provide what solution tool to use, the inputs to the tool, the 
control for each tool, and to retrieve the results from each tool.  SMMs are created for 
diverse solution methods and for various vendor specific tools. 

6 CBAM SPECIFIC TERMINOLOGY 
6.1 Product model-based analytical model (PBAM)  
A PBAM is a representation of the analysis model that includes the product design 
information.  In other words, the PBAM is a complex mapping of both parameters and 
features from the design representation of the product to the analysis representation of the 
product as specified by the ABB system.  The PBAM is a context and product specific 
instance of a generic analysis template. 

7 MANUFACTURABLE PRODUCT MODEL SPECIFIC TERMINOLOGY (MPM) 
7.1 Manufacturable Product Model 
Manufacturable Product Model of a product type p is a product model that contains only 
the minimum necessary information to manufacture the product.  A MPM contains only 
essential product attributes. A given product type p may have several alternative MPMs, 
depending on which attributes are considered to be essential for manufacturing.  

8 PRODUCT MODEL SPECIFIC TERMINOLOGY 
8.1 Product Model (PM) 
A product model of a product type p is a superset of the obtained by adding additional 
product attributes to the set of attributes.  The additional attributes defined in a PM are 
redundant product attributes.   These added attributes are considered redundant since they 
are not required to manufacture the part and since most can be derived from MPM 
attributes. The product relations needed to derive these additional product attributes are 
also defined as part of the PM. 
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