

Capturing Design Process Information and Rationale to
Support Knowledge-Based Design and Analysis Integration

Design Analysis Integration Lexicon
GaTech Project #B-01-691

August 3, 2004

Submitted to:

National Institute of Standards and Technology
Gaithersburg, MD

Technical Point of Contact:

Steven R. Ray
ray@nist.gov

+1-301-975-3524

Prepared by:
1Manufacturing Research Center

2G.W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology (GIT)
Atlanta, Georgia USA

http://www.marc.gatech.edu/

Technical Points of Contact:
Russell S. Peak 1 (PI)

russell.peak@marc.gatech.edu
+1-404-894-7572

Gregory M. Mocko2

 (Graduate Research Assistant)
gtg888d@prism.gatech.edu

Manas Bajaj2 (Graduate Research Assistant)
manas.bajaj@eislab.gatech.edu

Injoong Kim2 (Graduate Research Assistant)
Injoong.kim@eislab.gatech.edu

+1-404-385-1674

Georgia Tech Contracting Organization:
Office of Sponsored Programs

Georgia Tech Research Corporation (GTRC)
http://www.osp.gatech.edu

Design Analysis Integration Lexicon

i

PURPOSE
This document serves to enlist the definitions associated with the design-analysis
integration and MRA implementation and architecture development efforts at Georgia
Tech. The overarching goal in this research is towards a unified view of design-analysis
integration in the context of product design at Georgia Tech. Based on this view, we
leverage from other current research in the areas of product design, information
management, product modeling, simulation-based design, and design and analysis
integration efforts. In this context, engineering analysis means simulation of the physical
behavior of a product artifact for a particular problem scope and domain.

A secondary goal is to formulate a better understanding of engineering design and
analysis. A common view of design-analysis integration is the closer association
between traditional design tools, such as computer-aided design (CAD) tools and
computer-aided engineering tools (CAE) such as finite element analysis (FEA). This
notion can be somewhat limiting. The extended approach in this research is toward the
integration of engineering models throughout the life-cycle of the product. A subset of
the models that are integrated over the life cycle of the product are design and analysis
(simulation) models. The research advances and contributions made from DAI research
should be extended to capture additional engineering model associations. In closure, the
goals in this work are the following:

• Review and develop a formal lexicon based on existing concepts that have been
identified and/or addressed in DAI research in the EIS Lab

• Identify the additional concepts that must be incorporated and considered in this work
to generalize the research efforts towards engineering models associativity

• Critically evaluate the current state of technology development and implementation to
identify areas of opportunistic research.

The research presented in this document is primarily in the context of the Multi-
Representation Architecture (MRA).

Design Analysis Integration Lexicon

ii

TABLE OF CONTENTS
PURPOSE ..I

TABLE OF CONTENTS ... II

1 GENERAL DEFINITIONS FOR DESIGN ANALYSIS INTEGRATION ..1

1.1 ANALYTICAL MODEL ..1

1.2 ANALYSIS MODEL ...1

1.3 ANALYTICAL VARIABLES ..1

1.4 ANALYSIS IDEALIZATION ..1

1.5 REPRESENTATION ...1

1.6 INFORMATION MODEL ...1

1.7 ROUTINE ANALYSIS MODEL...2

1.8 ADAPTIVE ANALYSIS MODEL...2

1.9 ORIGINAL ANALYSIS MODEL ...2

1.10 ASSOCIATIVITY...2

1.11 PRODUCT-ANALYSIS TRANSFORMATIONS (PAT)...2

1.12 ANALYSIS-ANALYSIS TRANSFORMATIONS...2

1.13 IDEALIZATION...3

1.14 DIMENSIONAL REDUCTION ...3

1.15 GEOMETRIC SYMMETRIES...3

1.16 FEATURE REMOVAL..3

1.17 DOMAIN ALTERATION ..3

1.18 PHENOMENON REMOVAL..3

1.19 PHENOMENON REDUCTION ...3

1.20 PHENOMENON IDEALIZATIONS..3

1.21 BOUNDARY CONDITION IDEALIZATIONS ...4

1.22 MATERIAL IDEALIZATIONS ...4

1.23 SYNTHESIS ..4

1.24 PRODUCT VARIABLES..4

1.25 PRODUCT IDEALIZATION RELATIONS...4

1.26 HOMOGENEOUS DATA EXCHANGE..4

1.27 HETEROGENEOUS DATA EXCHANGE...4

1.28 MULTI-FIDELITY HETEROGENEOUS TRANSFORMATIONS..5

1.29 OBJECT-ORIENTED MODELING ..5

Design Analysis Integration Lexicon

iii

1.30 NON-CAUSAL MODELING ..5

1.31 EXPLICIT REPRESENTATION OF IDEALIZATION KNOWLEDGE..5

1.32 REUSABLE IDEALIZATIONS..6

1.33 MULTI-FIDELITY IDEALIZATIONS ..6

1.34 LATE-BOUND OPERATIONS..6

1.35 PRODUCT DOMAIN-INDEPENDENT ...6

1.36 COMPUTER INTERPRETABLE FORM ...6

1.37 PRODUCT VARIABLE ...6

1.38 DESIGN SYNTHESIS ...6

1.39 COMPLEXITY LEVEL..6

1.40 VARIABLES ...7

1.41 SUBSYSTEM ..7

1.42 SCOPE ...7

1.43 GRAPH ..7

1.44 SIMPLE GRAPH..7

2 COB SPECIFIC IMPLEMENTATION DETAILS..7

2.1 CONSTRAINED OBJECT REPRESENTATION..7

2.2 OVERVIEW OF COB REPRESENTATION ...7

2.3 COB DEFINITION LANGUAGES ...8

2.4 COB STRUCTURE DEFINITION LANGUAGE (COS LANGUAGE)..8

2.4.1 COB Relation...9

2.4.2 COB Sets..10

2.5 COB INSTANCE DEFINITION LANGUAGE (COI LANGUAGE)..10

2.6 COB GRAPHICAL REPRESENTATIONS ...11

2.6.1 Basic Object-Relationship (EXPRESS-G) Diagram Notation11

2.6.2 Basic Constraint Network Diagram Notation ..11

2.6.3 Basic Constraint Schematic Diagram Notation ...13

2.6.4 Additional Constraint Schematic-I Notation (COI)...13

2.6.5 Extended Constraint Graph/Network -S Diagram Notation14

2.7 COB META INFORMATION MODEL...18

2.8 COB PROTOCOL ...19

2.8.1 COB Creation...19

2.8.2 COB Usage ..21

Design Analysis Integration Lexicon

iv

2.8.3 COB Storage ..24

2.9 WIRTH SYNTAX NOTATION FOR COB DEFINITION LANGUAGES......................25

2.10 BASIC LANGUAGE ELEMENTS ..26

2.10.1 Character classes ..26

2.10.2 Remarks ...26

2.10.3 Reserved words..26

2.10.4 Identifiers and Interpreted Identifiers ..26

2.11 LITERALS ..26

2.11.1 Real literal ..26

2.11.2 String literal ...26

2.11.3 Unknown literal ...26

2.12 COB INSTANCE DEFINITION LANGUAGE (COI) ..27

2.12.1 Data ..27

2.13 COB SCHEMA DEFINITION LANGUAGE (COS) ...27

2.13.1 Data types...27

2.13.2 Declarations ...28

2.14 SUBTYPES (COB_SUBTYPE)..28

2.15 ANALYSIS-ORIENTED PRODUCT MODEL (AOPM)..29

2.16 PRODUCT MODEL (PM) ...29

3 ABB SPECIFIC TERMINOLOGY ...29

3.1 ANALYSIS BUILDING BLOCK (ABB)...29

3.2 GENERIC ABB ..29

3.3 PRODUCT SPECIFIC ABB ..29

3.4 ANALYTICAL PRIMITIVES ..29

3.5 ANALYTICAL SYSTEM ...30

4 APM SPECIFIC TERMINOLOGY...30

4.1 APM INSTANCE ..30

4.2 ANALYZABLE PRODUCT MODEL (APM)...30

4.3 APM INFORMATION MODEL...30

4.4 APM DOMAIN INSTANCE..30

4.5 APM PRIMITIVE ATTRIBUTES...30

4.6 SUPERTYPE_DOMAIN ..30

4.7 SET OF APM COMPLEX DOMAINS ..30

Design Analysis Integration Lexicon

v

4.8 APM ATTRIBUTES ..30

4.9 APM DOMAIN INSTANCES ..31

4.10 APM OBJECT DOMAIN INSTANCE...31

4.11 APM DOMAIN SETS AND APM SOURCE SETS ..31

4.12 APM SOURCE SET ..31

4.13 APM SOURCE SET LINKS..31

4.14 APM PRODUCT ATTRIBUTES ..31

4.14.1 APM Essential Product Attributes ...32

4.14.2 APM Redundant Product Attributes ..32

4.15 APM IDEALIZED ATTRIBUTES ..32

4.16 ENVIRONMENTAL ATTRIBUTES ...32

4.17 BEHAVIORAL ATTRIBUTES ..32

4.18 APM RELATIONS ..32

4.18.1 Set of APM Relations ..32

4.18.2 APM Product Relation...33

4.18.3 APM Product Idealization Relation ...33

5 SMM SPECIFIC TERMINOLOGY..33

6 CBAM SPECIFIC TERMINOLOGY ...33

6.1 PRODUCT MODEL-BASED ANALYTICAL MODEL (PBAM) ..33

7 MANUFACTURABLE PRODUCT MODEL SPECIFIC TERMINOLOGY (MPM)33

7.1 MANUFACTURABLE PRODUCT MODEL..33

8 PRODUCT MODEL SPECIFIC TERMINOLOGY ...33

8.1 PRODUCT MODEL (PM) ..33

9 BIBLIOGRAPHY ..34

Design Analysis Integration Lexicon

1

1 GENERAL DEFINITIONS FOR DESIGN ANALYSIS INTEGRATION
This section contain concepts for the general research area of design analysis integration

1.1 Analytical model
An engineering approximation of physical behavior in exact form

Example: A spring system.

FF
k

∆ L

deformed state

Lo

L

x2x1

Figure 1 - Spring system analytical equation

The spring equation is: xkF ⋅=

The force, F, exerted by the spring is proportional to the spring constant, k, and the
displacement, x, of the spring. The equation is the exact form of the analytical model.
This analytical model may be a simplified abstraction of the actual behavior of the spring.
The equation is only an approximation of the actual behavior of the spring.

1.2 Analysis model
An analytical model or an approximation of the analytical model. The analysis model
may be the exact or an approximation of the analytical model. Several different types of
approximation techniques may be employed and several different analysis models may be
utilized

1.3 Analytical variables
 A variable that is used in the analysis relation.

1.4 Analysis idealization
A transformation from the physical situation into analysis attributes. The analysis
idealization is the natural direction of the transformation.

1.5 Representation
A computable approximation of the real world for an intended purpose there may be
more than one way to represent reality. The intended purpose of the representation
determines what type of information is needed for the representation. The representation
must be able to be implemented in a computer.

1.6 Information model
A formal (being in accordance with rules explicitly established prior to use) model (an
abstract description) of a bounded set of facts, concepts, or instructions to meet a
specified requirement.

Design Analysis Integration Lexicon

2

1.7 Routine analysis model
An established analysis model that is repeatedly used for a specific type of product, but
not a specific product instance. Routine analysis is the process of using routine analysis
models � using proven models on new instances . The variables and parameters of the
product remain fairly well known as do the relations. However, the value of each
variable is dependent on the product instance. Routine analysis does not imply the
models are simplistic. The models can be quite complex. However, the users of the
models must know the limitations of the models

1.8 Adaptive analysis model
Developed by adapting some aspect of a routine analysis model. Each time a �new�
model is created, the results must be validated to ensure the analysis model is correct.
Routine analysis models can be extended for slightly different analysis needs.

1.9 Original analysis model
An entirely new model that replaces an existing analysis model for a given type of
product or analyzed a new type of problem.

Table 1 - Types of analysis

Class Task Performer Task Task Output

Routine Product Designer Use established analysis
model repeatedly.

Analysis Results,
Design Changes

Adaptive Product Designer or
Engineering Analyst

Extend routine model
for same product type.

Extended Analysis Model,
Sample Results

Original Engineering Analyst
and Experimentalist

Develop new analysis
model for same / new
product type.

New Analysis Model,
Sample Results

1.10 Associativity
Linking of analysis models with product models. The data in the analysis must be linked
to the data of the product

1.11 Product-analysis transformations (PAT)
The linkages that are �hard-wired� between the product representation and the analysis
representation. These linkages may also be known as extraction of information. The
linkages are vital. The linkages should support bi-direction flows according to the PAT.

The two types are analysis idealizations and design synthesis operations. A linkage that
is between one or more product variables and one or more analytical variables. The
PATs are used to link the product variables with some of the analytical variables

1.12 Analysis-analysis transformations
A linkage that relates two or more analytical variables, emphasis is placed on linkages
between variables

Design Analysis Integration Lexicon

3

1.13 Idealization
To idealize is to construct an abstracted model of the real system that will admit some
form of mathematical analysis (Shigley and Mischke 1989). Most frequently, idealization
refers specifically to the transformations that are applied to the design representation of a
part, which is already an idealized version of the �real� or �physical� part in that the
design representation is a model of the typical actual part Idealizations are applied to
design information because most problems contain complexities that render numerical
simulation difficult or impossible to analyze. Finn provides the following categorization
of engineering idealizations1:

1.14 Dimensional Reduction
Involves reducing the degree of spatial analysis or time analysis. Spatial analysis may
involve reduction from 3-dimensional to 2-dimensional or 1-dimensional analysis. Time
analysis may involve reducing a transient analysis to a quasi-static or steady state
analysis.

1.15 Geometric Symmetries
Involves removing redundant domains by identifying spatial symmetries and applying
compensatory boundary conditions.

1.16 Feature Removal
Involves removing some engineering feature that is not expected to contribute
significantly to the overall analysis results (for example a small hole or a fin).

1.17 Domain Alteration
Involves changing some aspect of the spatial domain so that the analysis is simplified (for
example, modeling a thin aerofoil as a thin plate).

1.18 Phenomenon Removal
Involves the removal from analysis of complete phenomena based on the decision to
ignore the effect of that phenomenon (for example, ignoring stress effects within the
physical system).

1.19 Phenomenon Reduction
Applies to situations where a multi-component phenomenon exists and a particular
component is removed is removed because its significance is judged to be of minor
importance (for example, removing radiation analysis from a heat transfer problem).

1.20 Phenomenon Idealizations
Involves the use of mathematical expressions to describe the system phenomena. For
example, in fluid analysis, a number of mathematical equation models are available to

1 Finn distinguishes between simplifications and idealizations. In the list below, he considers the first
six operations simplifications and the last three idealizations. For the purposes of this discussion, a
simplification will be considered as a type of idealization.

Design Analysis Integration Lexicon

4

solve for flow analysis: parallel flow can be modeled using the full Navier Stokes
equations or a Couette flow model.

1.21 Boundary Condition Idealizations
May involve applying a mathematical equation to model a boundary condition that does
not perfectly represent the physical boundary conditions. For example, in heat transfer
modeling, a non-ideal surface may be modeled as a black body or gray body surface.

1.22 Material Idealizations
generally involve the use of idealized material laws to model some complex material
behavior. For example, modeling an expected non-linear material response using a linear
approximation function.

1.23 Synthesis
Synthesis is the opposite of idealization; the act of �appearing as a material form or
taking substantial shape�, that is, going from an abstract or ideal representation to a
physical representation. Effectively, synthesis is performed in three steps: the first is to
decide on the variables (primitive or complex) from the design representation of the part
that are going to be populated with values. The second step is to assign values to these
variables. The third step is to use this populated design representation to actually create
or manufacture the physical part. The assignment of values to the design variables is
normally based on the results of engineering analyses, but it could possibly be based on
rules-of-thumb, experience or even arbitrary judgment.

1.24 Product variables
The design representation of a product is expressed exclusively in terms of product
variables. Idealized variables whereas analysis representations are expressed as a
combination of product variables and idealized variables.

1.25 Product idealization relations
Product and idealized variables are related by product idealization relations. When these
product idealization relations are used to obtain idealized variables from product
variables (that is, in their �forward� form) they are called idealizations. When they are
used in the �reverse� direction, that is, to obtain product variables from idealized
variables, they are called synthesis relations.

In the context of design-analysis integration, idealization and synthesis characterize the
bi-directional nature of the design-analysis process:

1.26 Homogeneous Data Exchange
Data exchange that occurs between systems that are similar in scope and semantics,
hence mostly requiring syntactic translation of the data.

1.27 Heterogeneous Data Exchange
Is caused by the large gap in scope and semantics that exists between design and analysis
representations, which requires a syntactic and a semantic transformation of the data
being exchanged. A major issue between design and analysis representations

Design Analysis Integration Lexicon

5

1.28 Multi-Fidelity Heterogeneous Transformations
The term Multi-Fidelity Heterogeneous Transformations can be used to convey this
notion of different levels of detail of the models. The following figure depicts the notion
of multi-fidelity idealizations.

Flap Link

Multi-fidelity
Idealizations FEA-Based

Tension Analysis

Formula-Based
Tension Analysis

Simple Cross
Section

Detailed Cross
Section

Multiple
Uses

critical
cross
section

Figure 2 - Multi-Fidelity Analysis

1.29 Object-oriented modeling
Makes it possible to create physically relevant and easy-to-use components, which are
employed to support hierarchical structuring, reuse, and evolution of large and complex
models covering multiple technology domains.

1.30 Non-causal modeling
Modeling is based on equations instead of assignment statements as in traditional
input/output abstractions. Equations do not specify which variables are inputs and which
are outputs, whereas in assignment statements variables on the left-hand side are always
outputs (results) and variables on the right-hand side are always inputs. Thus, the
causality of equations-based models is unspecified and fixed only when the equation
systems are solved (this is called non-causal modeling). Direct use of equations
significantly increases reusability of model components, since components adapt to the
data flow context in which they are used (in other words, they can be used with multiple
input/output combinations of data). This generalization enables both simpler models and
more efficient simulation.

1.31 Explicit representation of idealization knowledge
The transformations required to obtain the values of idealized attributes from design or
product attributes are not explicitly defined anywhere. As a consequence, they end up
buried inside the code of the analysis applications making it difficult to reuse or modify
them. The APM Representation should provide the necessary constructs for defining
idealized attributes or features of the part as well as the mathematical relations that define
how these idealized attributes are derived from the �real� or �manufacturable� attributes
of the part. These definitions should be formally captured as part of the analyzable
product model itself.

Design Analysis Integration Lexicon

6

1.32 Reusable idealizations
Idealized attributes and product idealization transformations should be defined in such a
way that they can be used by potentially more than one analysis application (in other
words, be reusable).

1.33 Multi-fidelity idealizations
Different levels of precision by using more or less accurate idealizations of a feature. For
instance, a coarse analysis may only require a simple approximation of a feature, whereas
a more precise analysis would require a more detailed (and, consequently, more
computationally-demanding) version.

1.34 Late-bound operations
Late-bound operations are designed to manipulate information without previous
knowledge of the domain-specific structure of the data. It should be possible to reuse
these operations in a range of application domains without having to modify or customize
them.

1.35 Product domain-independent
Independent from any particular product domain or industry (for example, airplane
structures, printed wiring assemblies, etc.). In other words, it should be generic. The
constructs defined in this representation should not be expressed in terms of any
particular domain. The APM Representation should serve as a �template� for creating
domain-specific analyzable product models.

1.36 Computer Interpretable Form
Computer-interpretable language for defining analyzable product models. A computer
program should be able to parse this definition and create a corresponding representation
of the analyzable product model in memory that can be accessed and manipulated by
analysis applications. This computer-interpretable language must be easy to understand
by humans without extensive knowledge of its syntax.

1.37 Product variable
A variable that the designer would specify in order to fully define the product. product
variables cannot be directly used in the analysis model (AKA: product parameter)

1.38 Design synthesis
Generate product information by adding detail to analysis output or transforming them.
There may be two different types of synthesis activities 1) activities that modify the basic
working principles of the design and 2) activities that actually generate more information
and feature on the design side. The design syntheses are typically under constrained
relations.

1.39 Complexity level
Analysis models may be of varying complexity. This is related to the simplicity or
abstraction of the model. For example, the model may be equations-based or may rely on
complex finite element analysis.

Design Analysis Integration Lexicon

7

1.40 Variables
Variables are the input and the output of the analysis and design model. They are used
for exchange with other models.

1.41 Subsystem
 is another view of an analytical building block object that shows related variables in the
object to fulfill a particular purpose. A subsystem may be used in a graph of another
object. subsystems can be nested arbitrarily deep

1.42 Scope
The context in which the product parameter are valid. A variable can be known in one
subsystem and also in the other, but not be the same variables.

1.43 Graph

A triple),,(ϕEVG = where V and E are finite set and O is a function

1.44 Simple Graph
A graph whose edges are undirected, that does not have multiple edges between the same
two vertices, and that does not allow edges from a vertex to itself (Rosen 1995)).

2 COB SPECIFIC IMPLEMENTATION DETAILS
The COB specific implementation details are organized in the context of MRA.

Solution Method Model

ΨABB SMM

Analysis Building Block

Context-Based Analysis Model

SMMABB
ΦAPM ABB

CBAM

APM

4

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB
Solder Joint

Component

PWB

body3
body2

body1
body4

T0
body3

body2

body1
body4

T0

Printed Wiring Board (PWB)

Solder
JointComponent

Printed Wiring Board (PWB)

Solder
JointComponent

Analyzable
Product Model

3

2

1

Figure 3 �Multi-Representation Architecture
Terminology and concepts are then presented for each specific type of COB, including
CBAMs, ABBs, APMs, and SMMs.

2.1 Constrained object representation
The four main components are the COB Meta Information Model, the COB Protocol, the
COB Definition Languages, and the COB Graphical Representations.

2.2 Overview of COB Representation
COB representation consists of the four main components.

Design Analysis Integration Lexicon

8

COB
Representation

Definition
Languages

Meta
Information

Model

Graphical
Representations

Protocol

(section 4.2) (section 4.3)

(section 4.4)
Figure 4 - COB representation components
2.3 COB Definition Languages
The COB Representation includes two definition languages called the COB Structure
Definition language (COS language) and the

2.4 COB Structure Definition Language (COS language)
The COS language is used to define the structure of COBs, also known as a COS model.
The COS model describes a domain-specific model and is considered to be a �template�
of potentially many COI model. The COS language is developed based on the general
purpose STEP EXPRESS language (ISO 10303-11). EXPRESS is an object-flavored
information model specification language that is developed in order to enable the writing
of formal information models describing mechanical products. EXPRESS is the one of
the technologies that has been developed as part of the STEP standard for product data
exchange.

The EXPRESS language was extended and simplified to establish the COS language that
is specifically tailored for design-analysis integration.

To define attributes with symbols. Analysis attributes used in relations are usually
defined with symbols such as �L = k * ∆L� rather than �length = spring constant *
deformation�.

To represent relations between primitive attributes. EXPRESS language provides similar
capability with WHERE rule, but that is for conformance checking between primitive
attributes and is not suitable for calculation of unknown variable values in a constraint
graph base way. To define and categorize attributes, relations, and cobs specifically
tailored for design and analysis integration (DAI). For example, idealized attributes. For
flexibility in defining future extensions tailored to DAI.

The main elements of the COB Structure (COS) are schema, cob sets, cobs, and cob set
links. The cobs, like entities in EXPRESS, are the building block of COS. A COS is built
from cobs, like entities in EXPRESS, and each cob (except primitive ones) contains
attributes to represent its essential properties and relations to specify mathematical
constraints among its primitive attributes and sub attributes. An attribute declaration
consists of the name and data type of the attribute. The data type specifies the type of
value that the attribute has when it is instantiated. It may be a pre-defined primitive cob
(REAL or STRING), a complex cob (a cob that has attributes and/or relations), or an
aggregate where members are primitives or complex cobs.

Design Analysis Integration Lexicon

9

2.4.1 COB Relation
A relation declaration consists of a relation identifier (name) and a mathematical
expression. A relation is usually constraint-based (i.e., multi-directional) and used to
calculate unknown variable values.

2.4.1.1 Extended Aggregate Relation
A relational expression can be constructed with aggregate instance(s). For example, the
following defines a potential mathematical relation between the aggregate elements in
aggregate primitive cob a4 from cob a above
r3: “<a4[0]> == <a4[1]> * a4[2]”;

A relation may include the following aggregate operations the utilize all aggregate
members: Summation, Maximum, or Minimum. For example, the following relation:
r3: “<a1> == <a4.SUM>”;

defines that the summation of the values in primitive aggregate a4 must be equal to a1 no
matter how many instances of a4 are provided. Also, the aggregate operation can be
defined among elements in a complex aggregate such as
r4: “<a1> == <a6.MIN[b1]>”;

This relation defines that the minimum of value of the attribute of all members of b1 in
complex aggregate a6 must be equal to a1. These extended relations with aggregate
operations so that they are now multi-directional.

2.4.1.2 Uni-directional Relation (ONEWAY)
When a relation is declared ONEWAY, the attribute in its left-hand-side will always be
output and the attributes in its right-hand-side are inputs. For example, consider the
following relation.
r5: “<a> == + <c>” ONEWAY;

It means a is always output and b and c are always inputs. This capability has been
developed primarily to support a special kind of uni-directional relation that wraps an
external tool to obtain a variable value of output. See the following example.
“<e>==CobExternalToolFunction[T_name,F_name,{<a>,,<c>}]”
ONEWAY;

The first string between brackets ([]) indicates the external tool name, and the second
string indicates the external file name. The variables listed between curly-brackets ({ })
are input variables. This particular relation runs the finite element tool (FE), called
"T_name" to determine variable value e with a FE model created with a pre-prepared
parameterized template defined in the file called "F_name" with input values of a, b, and
c. The left-hand-side variable is always output, as tool like FE ANSYS typically have a
fixed natural output direction (e.g., calculating stress given material, geometry, and loads
as inputs).

2.4.1.3 Conditional Expressions
Another extension is three "if" control statement relations. Their forms are

Design Analysis Integration Lexicon

10

"IF_STRING (condition): relation"

"IF_TYPE (condition): relation"

"IF_AGGREGATE_SIZE (condition): relation".

The condition is a Boolean expression. If condition is true, then is included in the
constraint network. Relational operators are used in conditions. IF_STRING utilizes the
"Equal to (==)" operator to check the value of string-primitive attributes. For example,
"IF_STRING (ball_type = grid): <number_of_balls> == <balls_in_x> * <balls_in_y>"
checks the string value of ball_type attribute. If its value is grid, the relation followed by
the condition is included. IF_TYPE also uses "Equal to (==)" operator to check complex
cob's types. For example, "IF_TYPE (package == ebga): "mold.height ==
package.height" checks if the type of the complex attribute package is ebga.
IF_AGGREGATE_SIZE may use "Equal to (==)", "Greater than (>)", "Less than (<)",
"Greater than or equal to (>=)", or "Less than or equal to (<=)" operators. It checks the
size of aggregates (i.e., the number of members in an aggregate).

2.4.1.4 Inherited Relation Redefinition
When a cob is a subtype of another cob, the subtype inherits all attributes and some
relations from its supertype. However, relation will not be inherited when its relation
name in the subtype is the same as that in its supertype, thus providing overwriting
capability of relations.

2.4.2 COB Sets
Collections of similar cobs are grouped into cob sets within a given cob schema. Each
cob set contains a root cob to specify a root of the hierarchy tree. How cobs in the
different cob sets are related is defined in link definitions. The cob sets and their links
construct the top building block called schema. The following example shows the
concepts. Schema test has two cob sets set_a and set_b with root cobs, a and b,
respectively. Those two cob_sets are linked together to form a linked cob with the
equality relation define between LINK_DEFINTION and END_LINK_DEFINTION.
Enhanced Structure Reusability (USE_FROM)

2.5 COB Instance Definition Language (COI language).
The COI language is used to define an instance of the COS, also known as a COI model.
A COI model is a collection of COBs that describes a domain-specific data. A COI
definition is stored in a text file known as a COI file. The COB Instance Definition
language (COI) has similar capability with the general-purpose STEP Part21 File format
(ISO 10303-21). Both COI and STEP Part21 may be used to define constrained objects.
However, STEP Part21 is developed for the purpose of exchanging data among computer
systems and it lacks in friendliness to humans: lacks in readability, and creation of data
files is tedious. Thus, the COI is developed to overcome such shortcomings. The main
elements of a COB Instance (COI) model are an instance of root COB and a list of
primitive COBs belonging to the root COB. The COI definition syntax starts with DATA
syntax and ends with END_DATA. More than one COI may be defined in the same COI
file. Each COI is enclosed between INSTANCE_OF and END_INSTANCE keywords.
The INSTANCE_OF keyword is followed by a root cob instance name. Between
INSTANCE_OF and END_INSTANCE, there is a list of definitions describing cob

Design Analysis Integration Lexicon

11

primitive attribute values. Note that a COI definition does not require that all primitive
attributes defined in its COS be listed here; the only required attributes are the inputs and
the primary desired output.

2.6 COB Graphical Representations
These visual forms aid human interpretation of the COB Representation concept. Both
COS and the COI have graphical representations to aid human interpretation of the COB
models. Each of these graphical representations conveys a certain aspect of the COB
better than the others. For example, the object relationship diagram (EXPRESS-G)
shows the generalization and specialization nature of objects, but it does not depict the
mathematical relations among their attributes; mathematical relations can be observed
from a constraint schematic diagram. The main COB graphical representations are:

• Object-Relationship diagram

• Constraint network diagram

• Constraint schematic diagram

2.6.1 Basic Object-Relationship (EXPRESS-G) Diagram Notation
An object-relationship diagram uses EXPRESS-G, which is part of the STEP standard
(ISO 10303-11 1994) for the graphical representation of the EXPRESS lexical language.
The object relationship diagram shows �the is-a relationship� in bold lines and �the part-
of relationship� in thin lines. Entity is used synonymously with COB.

A
A is entity (class)
 Instances of A are objects

A
A is a simple type
(BOOLEAN, LOGICAL, BINARY,

 NUMBER, INTEGER, REAL, STRING)
a1

A B a2 A has two attributes, a1 and a2, that
 are both type B

A B a1

S[1;?]
A has an attribute, a1, that is
 a Set of 1 or more entities of type B

A

C B

A is a supertype of B and C.
 (B and C are subtypes of A)

Unofficial extensions:
A is a multi-level entity that has two level

 a1 is type B. a2 is type C.
A

B
a2

a1

C
2.6.2 Basic Constraint Network Diagram Notation
A constraint network diagram is used to represent how COB attributes and relations are
interconnected. This Diagram is useful for the following reasons:

Design Analysis Integration Lexicon

12

• To visualize how a change in an attribute value affects the other attribute values.

• To determine which relations should be used to build the system of equations to solve
for an attribute value.

• To figure out possible input/output combinations for attributes.

• To visualize which relations are multi-directional (MULTI-WAY) and which
relations are uni-directional (ONEWAY).

R1
R2

R3R4

A.a1

A.a1

A.a3

A.a2

A.a6.c2

A.a6.c1

A.a4.b2A.a4.b1

A.a5

Attribute (full attribute name)

Relation

ONEWAY connector

MULTI-WAY connector

A "full attribute name" is obtained by concatenating the attribute from the root cob to the
terminal attribute in its hierarchy tree.

A MULTI-WAY connector (default type of connector) is for a relation that does not
define which attributes are inputs or outputs. For example if the �R4� relation is stated as
�A.a1 = A.a2 + A.a3�, the relation has three possible input/output combinations: �A.a1�
is output and �A.a2� and �A.a3� are inputs, �A.a2� is output and �A.a1� and �A.a3� are
outputs, and �A.a3� is output and �A.a1� and �A.a2� are inputs.

A ONEWAY connector is for a relation that is defined with a specified input/output
combination. For example if the �R1� relation is defined as a ONEWYA relation where
�A.a1 = A.a2 + A.a3�, then �A.a1� is always output and �A.a2� and �A.a3� are always
inputs.

A constraint network is an alternate way to represent COB Relations. In a constraint
network, variables and relations are represented as vertices of a simple graph. Each node
in a constraint network may be either a variable or a relation. Variables can only be
connected to relations and relations can only be connected to variables. This
representation allows to determine what variables are affected by the change in value of a
given variable, or what relations are required to calculate the value of a given variable.

Design Analysis Integration Lexicon

13

2.6.3 Basic Constraint Schematic Diagram Notation

variable subvariable
subsystem

equality relation

relation

s

a b

dc

a

b

d

c

e

a.da
s

r1
r1(a,b,s.c)

e = f

subvariable s.b

[1.2]

[1.1]
option 1.1

f
f = s.d

option 1.2
f = g

option category 1

gcbe −=
r2

h of cob type h

w
L [j:1,n]

wj
aggregate c.w

element wj

Figure 5 - Constraint Schematic-S Notation (COS)

2.6.4 Additional Constraint Schematic-I Notation (COI)

200 lbs

30e6 psi

X

Relation r1 is suspended
X r1

100 lbs

Equality relation is suspended

a

b

c

100 lbs Primary Input
(Input 10 lbs)

a

Intermediate Input
(Input 10 lbs)

Intermediate Output
(Result = 30e6 psi)

Primary Output
(Result = 200 lbs)

Design Analysis Integration Lexicon

14

2.6.5 Extended Constraint Graph/Network -S Diagram Notation

A R

S

R

B

R

R

R

R

C

D S

R

E

F

G

R

R

S

S

R

R

a1

a2

a3

a4

a5

a6 d1

d2

d3

g3

g2

g1

f1

f2

e1

e2

c2

c1

c3

b1

b2

R1

R2

object domain

primitive (terminal) domain

relation

primitive
aggregate domain

complex
aggregate domain

essential attribute

multi-level domain
levels

redundant attribute

idealized attribute

oneway
relation

COB Instance(COI)

Language

Extended Constraint Graphs-I

Constraint Schematic-I

STEP

Part 21

200lbs

30e6psi

100lbs 20.2 in
R101

R101

100lbs

30e6psi 200lbs

20.2 in
HTML

Subsystem -S view

Object Relationship Diagram

COB Structure (COS)
Language

I/O Tables

Extended Constraint Graphs-S

Constraint Schematic-S

STEP
Express

Express-G

HTML

COB Structure (COS) COB Instance (COI)

Figure 6. COB Modeling Views

Design Analysis Integration Lexicon

15

spring_system

spring_2

spring_1

load

deformation1

deformation2

spring

undeformed_length

force

total_elongation

length

end0

start

spring_constant

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Figure 7 - Object Relationship Diagram (EXPRESS-G).
The constraint network shown is a "flattened" view of the constraint schematic view
explained next.

spring2.spring_constant

spring2.total_elongation

bc4

spirng1.
spring_constant

spring1.
Total_elongation

spring1.
undeformed
_length

r2

spring1.l
ength

r3

load

r2

spring2.
length

r3

 spring2.force

deformation1 deformation2

 bc5

spring1.
force

spring2.undeformed_lengthbc6

bc3

r1

spring1.start

spring1.end

r1

spring2.
end

spring2.
start

bc2

bc1

Figure 8 - Constraint network-S diagram
A COB subsystem view, where a high-level object is wrapping one or more lower-level
objects and/or other sub-systems, may be included in a COB constraint schematic2. It is
an abstraction view of a COB that hides unnecessary details from users. The full
constraint network is present and active in subsystems no matter which variables are
shown on a subsystem view. A line connecting attribute(s) means equality and the
constraint schematic shows only system level relations that are defined in the COB
structure definition of the two-spring system.

2 Constraint schematic diagrams were first introduced in [2] to represent Analysis Building Blocks and
Product Model-Based Analysis Models.

Design Analysis Integration Lexicon

16

Spring

L∆L

Fk

1x L
0

2x

Figure 9 Spring -subsystem-S view

bc1

spring 1

2u

spring 2

1u

P
Spring

Elementary

L∆L

Fk

1x L
0

2x

122 uLu +∆=

bc2 bc3

bc4

bc6

Spring
Elementary

L∆L

Fk

1x L
0

2x

bc5

011 =x

spring2
spring1

L10

k1

∆L1

L1

L20

k2

x21

x22

F2

∆L2

L2

F1

bc4

r12

r13

r22

r23

bc5
bc6

bc3

r11 r21

bc2

bc1

u1 u2

P

x11

x12

Constraint Schematic-S

Constraint Network-S

Figure 10 - Two-spring system - constraint schematic-S diagram (with spring) with
constraint network-S

L∆

L

Fk

undeformed length,

spring constant, force,

total elongation,

1x

Llength,0

2x
start,

end,

oLLL −=∆

12 xxL −=

LkF ∆=

r1

r2

r3

Figure 11 - Figure Spring - constraint schematic-S

Spring System

 spring2

Pspring1

u1

u2

Figure 12 - Two-spring system - subsystem-S view
As mentioned before, in the constraint network lines are used to represent connection
between relations and their related attributes. For example, a multi-way relation r1, <a>
== +<c> is depicted as below.

Design Analysis Integration Lexicon

17

R1
a

c

b

Figure 13 - Multi-way relation: constraint network-S
For a special kind of relation, a uni-directional (oneway) relation, the lines connecting
attributes and relations are replaced with arrows to shows data flow directions. For
example, consider a uni-directional relation, <a> == + <c>. If a is output and b and
c are inputs, its constraint network is depicted as below.

R1
a

c

b

Figure 14 - Oneway relation: constraint network-S
The Graphical Representations mentioned in this section so far deal with the structure of
COBs. Instance of COBs may be viewed with the Constraint Network Diagram-I and/or
Constraint Schematic Diagram-I. Adding variable values in schema-level diagrams
creates instance-level diagrams. The values enclosed by single-line boxes are inputs. If
the input is assigned at the COB Structure level, the variable value has an underline (e.g.,
r1 relation in the two-spring system example where zero is assigned to spring1.start).
Values enclosed by the double-line box are the primary desired outputs. Values without
boxes are intermediate outputs whose values are found during the determination of the
primary desired output(s).

 Spring2 Spring1

bc4

spring_constant

total_elongation

undeformed_length

r2

length
r3

load

r2

length
r3

 force

deformation1 deformation2

 bc5

force

undeformed_length
 bc6

bc3

r1

start

end

r1

end

start

bc2

 bc1

5.5

8.0

0

10.0 10.0

1.818
3.485

10.0

9.818

9.818

1.818

6.0

8.0

9.667
19.48

9.818

1.667

a. Constraint network-I diagram

Design Analysis Integration Lexicon

18

bc1

spring 1

2u

spring 2

1u

P

Spring

L∆L

Fk

1x L
0

2x

122 uLu +∆=

bc2 bc3

bc4

bc6

Spring

L∆L

Fk

1x L
0

2x

bc5

011 =x

1.818

10.06.0

8.0

5.5

8.0

3.485

9.818

10.0

10.0

9.818

1.667

9.667

19.48

1.818

9.818

b. Constraint schematic-I diagram
Figure -15 COB instance diagrams for a two-spring system exampleCOB Protocol
2.7 COB Meta Information Model
The information model for the COB structure and the COB instance and deals with
generic aspect of the COB representation. An instance of the COB Meta Information
Models defines the COS and COI and they can be accessed via COB Protocol that allows
interpretation of data interactively.

Generic
Metadata

Generic
Data

Specific
Structure
Data

Specific
Instance
Data

COB
Instance
Definition
Data

COB
Structure
Definition
Data

Example:

COICOICOSCOS

L

k x2
F

∆L
L

x1
F 10.010.0

20.020.0

5.05.0

22.022.0
2.02.0

10.010.0 32.032.0

Graphical
Representations

Protocol

Definition
Languages

Meta Information
Model

Figure 16 - The COB meta information model with other components

Design Analysis Integration Lexicon

19

2.8 COB Protocol
This section describes the major operations that compose the COB Protocol. These
operations are called late-bound because they are designed to access and manipulate the
COB Representation without previous knowledge the definition of domain-specific COS
entities.

The following is a typical sequence of high-level tasks performed by a typical COB-
based application (an application that manipulates COB using operations defined in the
COB Protocol).

1) COB Creation

2) COB Usage

3) COB Storage

COB Definition
Files

Constraint
Solver

COB
Structures

COB
 Instances

Constraint Network

COB based
Custom Tools

Creation
� COS
� COI
� CNT

COB Usage
� solve
� change I/O
� change value
� activate relation

�..

Storage

Constrained Objects (COBs)

Client
Application

M

COB Protocol

Client
Application

M
Client

Application
M
Client

Application
1

Figure 17 - High level COB protocol operations
2.8.1 COB Creation
The COB Protocol must provide a way to create cobs. First, the COS must be created in
order to make available meta data that correspond to the structure of COBs (the domain�
specific model template). This is done by parsing a COS model. The COS model must
be linked according to what is specified by the COB Source Set links.

Design Analysis Integration Lexicon

20

cob_a a1

a2

a3 R

S

set_a

cob_b b1

b2

S

R

set_b

R

Figure 18 - Source set link example - before link: extended constraint graph -S
The COS model has two source sets (set_a, and set_b) and one source set link (defined
between the keywords LINK_DEFINITIONS and END_LINK_DEFINITIONS in the
definition file). As illustrated in, the source set link links attribute a1 of domain cob_a in
set_a COS with attribute b1 of domain cob_b in set_b COS. .

cob_a a1

a2

a3 R

S

set_a

cob_b b1

b2

S

R

set_b

R

link

Figure 19 - Source set link example - connecting: extended constraint graph-S

Scob_a a1

a2

a3 R

cob_b
b1

b2 RR

Figure 20 - Source set link example - after link: extended constraint graph-S
2.8.1.1 COI Creation
Second, one or more COI models must be created to make the domain-specific data
(instances of the COS) accessible. This is done by parsing a COI file describing a
particular model using the COI language. The COI also must be linked. This operation
is similar to linking the COS definition described previously. The difference is that
instead of linking attributes of COB domains, this operation links instances of these
attributes.

Design Analysis Integration Lexicon

21

2.8.1.2 Constraint Network Creation
Next, an instance-based constraint network for each COI is created so that it can be used
to construct simultaneous equations to solve unknown variable values. The relations of
each complex cob are added to the constraint network. Each cob is identified with its full
attribute name so that it will be unique within the constraint network. For example,
length of spring in spring1 and spring2 instances are defined as spring1.length and
spring2.length. .

As mentioned before a COI model does not need to contain all COBs defined in its
corresponding COS model: all that is required are primitive attributes that are input and
primary desired output3. This is because intermediate COIs, connected to these defined
COIs at the constraint network level, will be automatically created during constraint
network construction.

Relations with aggregate operations (SUM, MAX, and MIN) are instantiated/expanded
based on aggregate instances when they are added to a constraint network. A relation
such as a = b.SUM, where b is a real-primitive aggregate, is expanded to a = b[0] + b[1]
+ b[2] if b has three aggregate elements. A relation with MAX and MIN aggregate
operations such as a = b.MAX it also instantiated in similar way. For example, if there
are three b aggregate elements, the relation is instantiated as a = MAX[b[0], b,[1], b[2]].
This relation is also multi-directional. For example, if a is known to have a value of 10.0
and b[0] and b[1] are known to already be less than 10.0. Then b[2] will be set equal to
10.0. Similar instantiation is performed for the MIN operator.

b[0]

a
SUM

b[1]

b[2]

Figure 21 - Constraint network-S for �a = b.SUM�
2.8.2 COB Usage
2.8.2.1 Query
After constructing the cobs, the COB Protocol must provide a way to query information
about the domain-specific instances (COIs) data. Any attribute of an instance is
accessible via the get method with the full attribute name as its argument4. The full

3 Except for aggregate instances. For example, a relation <a> = <b.MAX> to be correctly added to
constraint network at least one instance of b should be defined.
4 A strong typed programming language such as Java needs pre-declared variable types at compile time.
In this case, these protocol operations must be modified to specify their return type (i.e., a get attribute
becomes get real attribute)

Design Analysis Integration Lexicon

22

attribute name is obtained by concatenating the attribute names all the way up in the
hierarchy tree to the cob that is receiving this method.

There are two special query methods for primitive attributes (REAL and STRING) - get
value and set value. Sending the method to a primitive cob or a non-primitive cob with a
full attribute name as its argument permits access to its primitive values.
A R

S

R

B

R

R

D

R

C

R

a1

a2

a3

a4

a5 c2

c1

c3

b1

b2

R

Rd1

d2

Figure 22 - An example COS: extended constraint network
2.8.2.2 Solve
The unknown variables of a domain-specific instance can be solved via the solve
operation that is available in root cob. Unknown variables trigger creation of a series of
simultaneous equations from the constraint network to be solved. Pseudocode of this
operation is in Appendix F. The number of simultaneous equation sets sent to the
constraint solver is equal to the number of sub-graphs in the constraint network5.

5 If the constraint network contains ONEWAY uni-directional relations, the number of equation sets sent to
the constraint solver may be more than the number of sub-graphs.

Design Analysis Integration Lexicon

23

Set A

A.a1 = A.a2.b1
A.a2.b1 = A.a2.x2.y1
A.a2.x2.y1 = A.a2.x2.y2

A.a1 = 5.0

Input
Constraint Network

Result
Constraint Network

A.a2.b1

A.a2.x2.y2

A.a2.x2.y1

R1
R2

R3

A.a1

5.0

A.a4

A.a3

R4

2.0 A.a4

2.0

A.a3

R4

2.0

5.0
A.a2.x2.y2

A.a2.x2.y1

R1
R2

R3

A.a1

5.0
A.a2.b1 5.0

5.0

Note: All relations are equality relations.

A.a3 = A.a4
A.a1 = 2.0

Set B

Simultaneous Equations

constraint
solver

Figure 23 - Graphical overview of the "Solve" constraint processing algorithm (with
multi-directional relations)
When a ONEWAY uni-directional relation is included in a constraint network, special
consideration is necessary to solve unknown values. Since a ONEWAY relation is not
inversable, it is necessary to check whether its all inputs are known or not. If all input
variable values of the ONEWAY relation are known, the corresponding simultaneous
equation set is constructed in the same way as the simultaneous equations with only
multi-way relations. If any one of the input variable values is unknown, more than one
simultaneous equation set may be constructed from a constraint network sub-graph.

The R2 relation is ONEWAY whose output is A.a2 and whose inputs are A.b1, A.b2, and
A.b3. Since all inputs of the ONEWAY function do not have values in this instance, the
ONEWAY relation and other relations connecting exclusively to its output are not used
to construct the first simultaneous-equation set. If the result from the first equation set
determines the values of all inputs to the ONEWAY relation, the second set of
simultaneous equations is created from the ONEWAY relation and any other relations
connecting to ONEWAY's output. In this example, all ONEWAY's inputs, A.b1, A.b2,
and A.b3, were solved in the first equation set. Thus, the second equation set is
constructed from the ONEWAY relation, R1, and the R2 relation which connects to the
ONEWAY output, A.a2. After the second equation set is solved, the values of A.a1 and
A.a3 are determined.

Design Analysis Integration Lexicon

24

A.a1 = A.a2+ A.b1
A.b1 = A.c1
A.b2 = A.c2
A.b3 = A.c3

A.c1 = 1.0
A.c2 = 2.0
A.c3 = 3.0

A.a1

Simultaneous-Equation Set 1

A.c1

R1 R3

R4

A.b1

A.a2
R2

R5

A.b2

A.b3

A.c2

A.c3

R2

1.0

2.0

3.0

A.c1

R1 R3

A.a1
A.b1

A.a2

1.0

R4

R5

A.b2

A.b3

A.c2

A.c3

2.0

3.0

A.c1

R1 R3

A.a1

A.b1

A.a2

1.0

R4

R5

A.b2

A.b3

A.c2

A.c3

2.0

3.0

1.0

2.0

3.0

A.a1

A.c1

R1 R3

R4

A.b1

A.a2
R2

R5

A.b2

A.b3

A.c2

A.c3

R2

1.0

2.0

3.0

1.0

2.0

3.0

A.a1

R1

A.b1

A.a2
R2

A.b2

A.b3

R2

1.0

2.0

3.0

A.a1 = A.a2+ A.b1
A.a2 = Oneway[A.b1,A.b2,A.b3]

A.c1 = 1.0
A.c2 = 2.0
A.c3 = 3.0

A.a1

R1

A.b1

A.a2
R2

A.b2

A.b3

R2

1.0

2.0

3.0
2.0

3.0
Simultaneous-Equation Set 2

A
B

C

DE
F

G

H

Figure 24 - Graphical overview of the "Solve" constraint processing algorithm (with
one ONEWAY relation)
Issuing set value with a value argument changes the value of real attributes in COBs. A
Boolean flag called isSolved for the COI that contains the reset COB becomes false and
the COI can be resolved with the solve operation.

2.8.2.3 Change I/Os (data flow direction)
The data flow direction of COI can be changed. To change a COB real attribute data
flow from input to output, set as output needs to be issued to the COB. To change a COB
real attribute data flow from output to input, set as input needs to be issued to the COB.
Then, the value of the COB should be set with set value operation. In both cases, a
boolean flag called isSolved for the COI that contains the reset COB becomes false. The
unsolved COI can be resolved with the solve operation.

2.8.2.4 Activate/Dis-activate Relations
Relations may be relaxed (dis-activated) or activated. Relaxing a relation temporarily
removes it from its constraint network. Activating a relation returns it to its constraint
network. In order to relax a relation currently active, set active (false) must be issued.
To activate a currently relaxed relation, set active (true) must be issued.

2.8.3 COB Storage
The values and directionality (input/output) of primitive COB attributes can be modified
during the utilization of COI, so that the COB Protocol must provide a way to save the

Design Analysis Integration Lexicon

25

new data. A COI model may be saved in a linked or unlinked form. The linked COI
conforms to the linked version of COB schema that has one cob-set merged from two or
more cob sets. A linked COI can be separated unlinked COIs that conform to the original
individual cob sets of the COB schema. COB LIBRARIES

2.9 WIRTH SYNTAX NOTATION FOR COB DEFINITION LANGUAGES
The syntax of COB Definition languages is presented in this subsection using Wirth
Syntax Notation (WSN), which is also used to define the EXPRESS language. The COB
definition language uses syntax defined in EXPRESS as much as possible.

EXPRESS identification numbers follows the EXPRESS defined syntax. COB specific
syntax is preceded by �cob_�. The following is an example of EXPRESS syntax
compared to COB-specific syntax.

EXPRESS syntax
245 named_type = entity_ref | type_ref.

COB specific syntax

 cob_named_type = cob_id .

The notation for WSN defined in itself is follows (an excerpt from [24]).

syntax = { production } .

production = identifier �=� expression �. � .

expression = term { �|� term } .

term = factor { factor } .

factor = identifier | literal | group | option | repetition .

identifier = character { character } .

literal = � � � � character { character } � � � �

group = �(� expression �) � .

option = �[� expression �] � .

repetition = �{� expression �}� .

The important conventions are listed below.

• Equal signs �=� indicate �is defined as�. The element on the left defines the

combination of the elements on the right.

• Vertical lines �|� indicate that only one of the terms in an expression should be

chosen.

Design Analysis Integration Lexicon

26

• Curly brackets �{ }� indicate zero or more repetitions.

• Square brackets �[]� indicate optional terms.

2.10 Basic language elements
2.10.1 Character classes
2.10.1.1 Digits
COBs use the Arabic digits 0-9.

2.10.1.2 Letters
COBs use the upper and lower case letters of the English alphabet.

2.10.1.3 Special Characters
The special characters, which are neither digits nor letters, are used mainly for
punctuation and operators.

2.10.2 Remarks
A remark is used for documentation and is interpreted by a COB language parser as
whitespace. Any character in the COB character set and the new line character may be at
the start and end of an embedded remark. Embedded remarks can span several lines.
Embedded remarks can not be nested.

2.10.3 Reserved words
2.10.4 Identifiers and Interpreted Identifiers
Identifiers are used for any user-defined name used in COB languages. The first
character of an identifier should be a letter. The remaining characters, if any, may be any
combinations of letters, digits, and the underscore character. An identifier can not be the
same as a COB reserved word. The interpreted identifiers are known to have a particular
meaning.

2.11 Literals
A literal is a constant value used in the user-defined primitive data type values. The COB
language currently supports Real and String literals.

2.11.1 Real literal
A real literal represents a value of a real data type composing a mantissa and an optional
exponent.

2.11.2 String literal
A string literal represents a value of a string data type composing a sequence of
characters from the COB character set enclosed by double quote marks (�).

2.11.3 Unknown literal
An unknown literal represents a value of a real data type that is unknown.

Design Analysis Integration Lexicon

27

2.12 COB Instance Definition Language (COI)
The COB Instance Definition Language (COI) is used to define the instances/objects of
one or more COB structures.

2.12.1 Data
2.12.1.1 Simple data (cob_simple_data)
The syntax for the simple data include:

• cob_real_data = Real literal .

• cob_string_data = String literal.

• cob_unknown_data = unknown literal .
2.12.1.2 Declaration
A data declaration defines a common scope for a collection of related cobs and other data
type declarations.

2.12.1.3 Instance
Defines an instance of data, the syntax is the following:

• cob_instance_body = INSTANCE_OF cob_root_instance_id �;� cob_attribute_data
END_INSTANCE �;� .

• cob_root_instance_id = simple_id .
2.12.1.4 Attribute
Defines the attributes:

• cob_attribute_data = cob_an_attribute_data {cob_an_attribute_data } .

• cob_an_attribute_data = cob_full_attr �:� cob_simple_data .

• cob_full_attr = cob_attr { �.� cob_attr } .

2.13 COB Schema Definition Language (COS)
The COB Schema Definition Language (COS) is used to define a COB schema
consisting of one or more COBs in one or more cob-sets.

2.13.1 Data types
Every attribute has an associated data type.

2.13.1.1 Simple data type (cob_simple_types)
Simple data type is a basic data type which can be used to create more complex types.
The COB language provides Real and String simple data types.

2.13.1.2 Aggregate data type (cob_aggregate_types)
The domain of aggregate types have the collection of base_data_type. The COB
provides the definitions of LIST aggregate data type.Rules and restrictions:

Design Analysis Integration Lexicon

28

• The bound_1 expression should be an integer value greater than or equal to zero or
one.

• The bound_2 expression should be an integer value greater than the bound_1
expression or indeterminate (?) value.

• Conformance checking between the bounds and the instance is not supported.
2.13.1.3 Named data type (cob_named_types)
The named data type is established by COB declarations.

2.13.2 Declarations
2.13.2.1 Schema
A SCHEMA declaration defines a common scope for a collection of related cobs and
other data type declarations.

2.13.2.2 COB Declarations
A COB declaration creates a cob data type and declares an identifier to refer to it.
Attributes represent a characteristic of a cob and may be associated with a value in each
cob instance. A relation clause represents required relationships among real attribute
values for a given instance. Rule and restrictions:

• Attributes defined in the cob declaration should be unique with in the declaration.

• A subtype should not declare an attribute with the same name as an attribute of its
supertype (i.e., redeclaration of attribute is not supported).

• A subtype should not declare a relation having the same identifier as a relations of
one of its supertypes, except when a subtype redeclares redefines a relation inherited
from one of its supertypes.

2.13.2.3 Attribute (cob_attr)
The attributes of cob data type represent a cob�s essential character. An attribute
declaration defines a corresponding relation between the cob data type and the data type
reference by the attribute.

In COS, an attribute may be defined together with its symbol. The symbols specified in
COS attribute definitions can include special characters (e.g., Greek letters) defined in the
ISO 9573-13 character set standards. One online reference for this standard is available
in Chapter 6 of the MathML document (see, for example group ISOGRK3 for Greek):

2.13.2.4 Relation (cob_relation_clause)
Every mathematical relation (math_expr) should refer to primitive attributes declared
within the cob or terminal-primitive attributes belonging to the cob. The cob relation
clause, if present, should be proceeded by the cob specific relation clause.

2.14 Subtypes (cob_subtype)
The specification of cobs as subtypes of other cobs is allowed by COB language, where a
subtype cob is a specialization of its supertype. This establishes an inheritance

Design Analysis Integration Lexicon

29

relationship between the cobs in which the subtype inherits the properties (attributes and
relations) of its supertype. Rules and restrictions:

• A subtype can have only one supertype.

• A supertype may have more than one subtype.

• A cob can not declare an attribute with the same as an attribute inherited from its
supertype.

• Redeclaring of inherited attributes is not allowed.

• All attributes in a supertype are visible to its subtypes.

• Relations in supertype are visible to its subtypes when the relation name in a subtype
is not used to re-declare (redefine) that relation for usage in the subtype.

2.15 Analysis-Oriented Product Model (AOPM)
An abstracted view of the design-oriented product data that is more �appropriate� for
engineering analysis. It contains entities whose names, attributes and structure are more
suitable for use by analysis models, data that is used by the analysis models, which is a
subset of all the data generated by the design tools; and it supports idealizations of the
design data that can be shared by multiple analysis models.

2.16 Product model (PM)
The representation of the product that contains the information over the life of the
product. The information may include geometry, BOM, assembly, and test instructions
to name a few.

3 ABB SPECIFIC TERMINOLOGY
3.1 Analysis Building Block (ABB)
An information model that has a defined structure and operations. Can be thought of as a
general template. An ABB consists of a primary partition and a collection of option
categories.

3.2 Generic ABB
Product specific ABBs contain associativity and are called PBAMs. PBAMs deal
directly with the detailed design information

3.3 Product Specific ABB
For example, the complex structure and nature of the spring may be simplified from to
compute the k value for the spring based on material properties and geometry. The
PBAM model can be built from ABBs including primitive, systems, and other PBAMs

3.4 Analytical primitives
A type of ABB that is used to represent the basic analysis concepts. The specific product
information is not included in these representations.

Design Analysis Integration Lexicon

30

3.5 Analytical system
An ABB that is a collection of analytical primitives. The primitives themselves are also
ABBs. (Note: Product information is not included in the analytical system.)

4 APM SPECIFIC TERMINOLOGY
4.1 APM Instance
The APM is actually populated with instances; it is called an APM Instance,

4.2 Analyzable Product Model (APM)
Analyzable Product Model is a container for the all APM Source Sets and APM Source
Set Links that define an analysis-oriented view of a given product type. In other words,
the APM provides a single point of entry to all the domains, attributes (product and
idealized) and relations that constitute an analyzable model of the product type. A given
product type may have more than one APM

4.3 APM Information Model
The APM Information Model is a formal engineering representation, specifically tailored
to analysis, whose primary goal is to facilitate design-analysis integration. It contains the
fundamental constructs used to define analyzable product models. It also provides a basis
for the rest of the APM Representation components presented in the remaining sections
of this chapter.

4.4 APM Domain Instance
APM Domain Instances are used to define instances of an APM Domain. There is one
subtype of APM Domain Instance corresponding to each subtype of APM Domain.

4.5 APM Primitive Attributes
They are grouped into product and idealized. Product APM Primitive Attributes belong to
the physical or design description of the product. They are usually defined in one of the
original source sets from which the linked APM was built.

4.6 Supertype_domain
Provides the means for defining inheritance hierarchies between APM Object Domains.
Following the object-oriented paradigm, a given APM Object Domain odi inherits the
attributes and relations of its parent supertype_domain.

4.7 Set of APM Complex Domains
The sets of APM Object Domains and APM Multi-Level Domains are joined to form the
Set of APM Complex Domains

4.8 APM Attributes
APM Attributes are used to define APM Complex Domains. There are five types of
APM Attributes, according to their domains:

1. APM Object Attributes;

2. APM Multi-Level Attributes;

Design Analysis Integration Lexicon

31

3. APM Primitive Attributes;

4. APM Primitive Aggregate Attributes; and

5. APM Complex Aggregate Attributes.

4.9 APM Domain Instances
An APM Domain Instance is simply a particular instance of a given APM Domain. There
are five types of APM Domain Instances, according to the domains of which they are
instances:

1. APM Object Domain Instances;

2. APM Multi-Level Domain Instances;

3. APM Primitive Domain Instances;

4. APM Primitive Aggregate Domain Instances

5. APM Complex Aggregate Domain Instances.

4.10 APM Object Domain Instance
APM Object Domain Instance contains a list of instances; each instance in this list
corresponding to an attribute of the domain being instantiated. These instances are, in
turn, APM Domain Instances as well. An APM Domain Instance ii is an instance of an
APM Domain dj (denoted ii Îi dj) when the domain of ii equals dj.

Individual APM Object Domain Instances are grouped to form the Set of APM Object
Domain Instances, OI, as follows:

4.11 APM Domain Sets and APM Source Sets
An APM Domain Set provides a way to group APM Domains according to any arbitrary
criterion. When an APM Domain Set is populated with instances it is called an APM
Domain Set Instance. An APM Domain Set Instance is defined as follows:

4.12 APM Source Set
An APM Source Set is an APM Domain Set whose domains {d1 , d2 , � , dn } are
populated with instances coming from the same source or data repository.

4.13 APM Source Set Links
APM Source Set Links specify when and how instances from different source sets in the
same APM should be joined (or �linked�) in order to obtain a single set of instances. An
APM Source Set Link is defined by specifying the following information: two different
source sets (belonging to the same APM), a key attribute in each set, a link condition, an
insertion attribute in the first set and an inserted attribute from the second set. The key
attributes must be primitive attributes that belong to the sets being linked.
4.14 APM Product Attributes
An APM Primitive Attribute is an APM Product Attribute if it belongs to the physical or
design description of the product. APM Product Attributes can usually be measured with
an instrument directly on the product or perceived by the senses. Examples of product

Design Analysis Integration Lexicon

32

attributes are the length of a plate, the diameter of a hole, the weight of a part, the
coordinate of a point, and the distance between two features.

4.14.1 APM Essential Product Attributes
An APM Product Attribute is an APM Essential Product Attribute if it is part of the set of
minimum and necessary attributes to manufacture the part. APM Essential Product
Attributes make up the �manufacturable� description of the product.

4.14.2 APM Redundant Product Attributes
An APM Product Attribute is an APM Redundant Product Attribute if it is not an APM
Essential Product Attribute. The decision of which attributes are essential and which
redundant is, in general, arbitrary. For example, if a part has three lengths L1, L2 and
Ltotal, and these lengths are related by the expression �Ltotal = L1 + L2�, then any two of
the three lengths may be chosen as essential and the third will automatically be
redundant. Despite being redundant, APM Redundant Product Attributes are often
defined to add expressiveness to the description of the product.

4.15 APM Idealized Attributes
An APM Primitive Attribute is an APM Idealized Attribute if it belongs to the idealized
description of the product. Idealized Attributes are fictitious in nature. In other words,
these attributes are �made up� by the analyst, based on his or her experience, and they
usually cannot be physically measured on the product, since they do not actually exist. In
general, idealized attributes are the result of simplifying or transforming product
attributes using heuristic knowledge. Examples of Idealized Attributes are the �critical�
area of a plate, the �effective� length of a link, and the �lumped� coefficient of thermal
expansion of a multi-layer PWB. Idealized Attributes are often needed for analysis
because most analysis models are expressed mathematically in terms of idealized
attributes of the product (or in terms of a combination of product and idealized
attributes).

4.16 Environmental attributes
Environmental attributes describe the environment in which the part performs at a given
point in time as well as its boundary conditions. Applied loads and temperatures fall in
this category.

4.17 Behavioral attributes
Behavioral attributes describe the behavior of the part when it is subjected to these
environmental conditions. They are normally considered the outputs of the analysis
models. Common examples of behavioral attributes are deformations and stresses.

4.18 APM Relations
APM Relations define how APM Primitive Attributes are mathematically related. An
APM Relation is defined as follows:
ri = (relation_name , { pa1 , pa2 , … , pan } , relation)

4.18.1 Set of APM Relations
Individual APM Relations are grouped to form the Set of APM Relations, R, as follows:

Design Analysis Integration Lexicon

33

R = {r1 , r2 , … , rn }

APM Relations can be divided into APM Product Relations and APM Product
Idealization Relations.

4.18.2 APM Product Relation
An APM Relation is an APM Product Relation if all the primitive attributes in the list of
related attributes {pa1 , pa2 , � , pan } are APM Product Attributes.

4.18.3 APM Product Idealization Relation
An APM Relation is an APM Product Idealization Relation if any of the primitive
attributes in the list of related attributes {pa1 , pa2 , � , pan } is an APM Idealized
Attribute.

5 SMM SPECIFIC TERMINOLOGY
The Solution Method Models (SMM) represent low-level, solution-specific methods.
SMMs combine inputs, output, and control for a single type of analysis solution. The
SMM is a wrapper of the necessary information to complete an analysis solution. The
SMMs serve as tool agents to provide what solution tool to use, the inputs to the tool, the
control for each tool, and to retrieve the results from each tool. SMMs are created for
diverse solution methods and for various vendor specific tools.

6 CBAM SPECIFIC TERMINOLOGY
6.1 Product model-based analytical model (PBAM)
A PBAM is a representation of the analysis model that includes the product design
information. In other words, the PBAM is a complex mapping of both parameters and
features from the design representation of the product to the analysis representation of the
product as specified by the ABB system. The PBAM is a context and product specific
instance of a generic analysis template.

7 MANUFACTURABLE PRODUCT MODEL SPECIFIC TERMINOLOGY (MPM)
7.1 Manufacturable Product Model
Manufacturable Product Model of a product type p is a product model that contains only
the minimum necessary information to manufacture the product. A MPM contains only
essential product attributes. A given product type p may have several alternative MPMs,
depending on which attributes are considered to be essential for manufacturing.

8 PRODUCT MODEL SPECIFIC TERMINOLOGY
8.1 Product Model (PM)
A product model of a product type p is a superset of the obtained by adding additional
product attributes to the set of attributes. The additional attributes defined in a PM are
redundant product attributes. These added attributes are considered redundant since they
are not required to manufacture the part and since most can be derived from MPM
attributes. The product relations needed to derive these additional product attributes are
also defined as part of the PM.

Design Analysis Integration Lexicon

34

9 BIBLIOGRAPHY
These references serves as the source for the definitions and terminology in this lexicon

Peak, R.S., (1993) Product Model-Based Analytical Models (PBAMS): A New
Representation of Engineering Analysis Models, Georgia Institute of Technology:
Atlanta, Georgia

Tamburini, D.R., (1999) The Analyzable Product Model Representation to Support
Design-Analysis Integration, Georgia Institute of Technology: Atlanta, Georgia

Wilson, M.W. The Constrained Object Representation for Engineering Analysis
Integration, 2000, Georgia Institute of Technology: Atlanta, Georgia

Peak, R.S.; Fulton, R.E., (1994) A Multi-Representation Approach to CAD/CAE
Integration: Research Overview, Advanced Electronic Packaging Lab, Project, Rapid
Thermomechanical Design of Electronic Products in a Flexible Integrated
Enterprise, Interim Report, Manufacturing Research Center, Georgia Tech,, Fulton,
R.E.et al., MS-93-03, Atlanta, 22-27.

Peak, R.S.; Fulton, R.E.; Nishigaki, I.; Okamoto, N. (1998) Integrating Engineering
Design and Analysis Using a Multi-Representation Approach , Engineering with
Computers, Volume 14, Number 2., 93-114.

