

## USE OF ENGINEERING TOOLS CASE HISTORIES

**JAKE ROBERTS** 

1

Handout 1b.2



## **COMPANY PROFILE**

- SMALL BUSINESS
- ESTABLISHED IN 1987
- ARIZONA CORPORATION
- EMPLOYEE OWNED WITH 35 EMPL.
- PRINTED CIRCUIT BOARD MANUF.
- MILITARY AND COMMERCIAL
- SHORT INTERVAL MANUFACTURER





# **CAPABILITY PROFILE**

- DOUBLE SIDED THROUGH 20 LAYERS
- EPOXY, POLYIMIDE, TEFLON, KAPTON
- RIGID, FLEX, AND RIGID FLEX
- CONTROLLED IMPEDANCE
- BLIND AND BURIED VIAS



- 7 MIL PITCH AND 5 MIL LINES/SPACES
- HIGH ASPECT RATIO





# **CAPABILITY PROFILE**

- SURFACE FINISHES
  - SOLDER COAT AND FUSED TIN LEAD
  - GOLD, NICKEL, TIN NICKEL
  - IMMERSION TIN
- ELECTRICAL TESTING
  - SIMULTANEOUS TOP AND BOTTOM
  - FIXTURED NET LIST AT 80 MIL GRID
  - FIXTURELESS FLYING PROBE







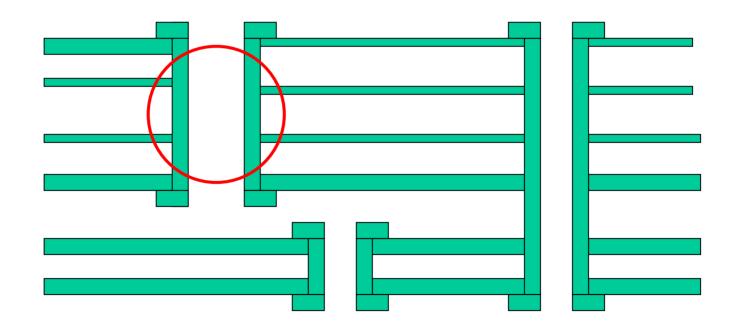
## EXPERTISE

- MFG. COMPLEX PRODUCTS
- ENGINEERING SOLUTIONS



- DELIVERY IN SHORT INTERVAL
- DESIGN FOR MANUFACTURE
- PROCESS CONSISTENCY
- FOCUS ON CUSTOMER SATISFACTION




# USE OF ENGINEERING TOOLS CASE 1

- SIX LAYER DOUBLE BLIND VIA
- PROBLEM OF FATIGUE FAILURE IN VIA
- CUSTOMER W/O ANALYTICAL TOOLS
- SEARCHED THE WEB FOR SOLUTIONS
- LOCATED "U-ENGINEER" AT GA TECH
- SOLICITED HELP FROM GA -TECH
- FINITE ELEMENT ANALYSIS

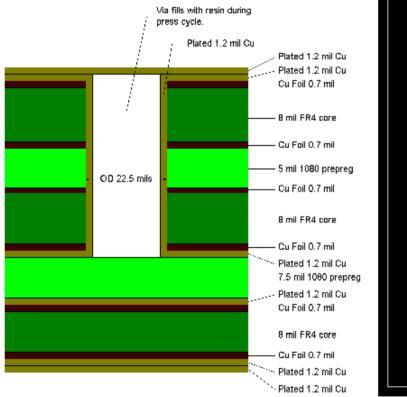


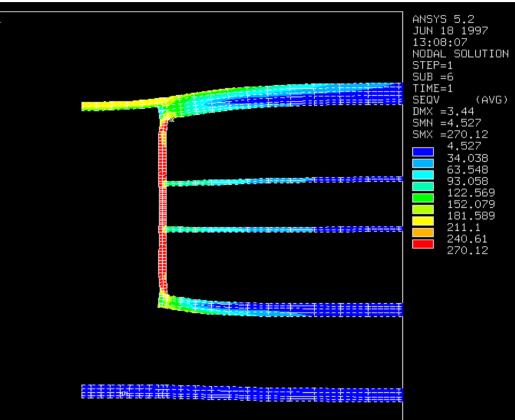
### **CASE 1 LAY-UP**

### • LAYER 1-4 BLIND & 5-6 BLIND






# USE OF ENGINEERING TOOLS CASE 1 CONTINUED


- ANALYSIS OF PLATED THROUGH HOLES
- PREDICTED FATIGUE FAILURE OF BLIND VIA DURING 2ND PRESS CYCLE
- BOARD REDESIGNED TO REDUCE BARREL STRESSES



# **Case 1 Analysis Results**

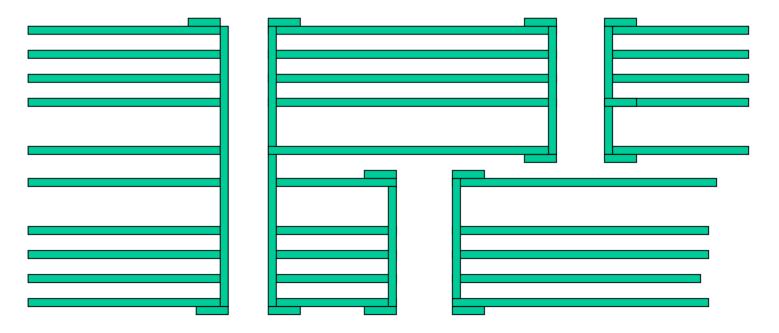
#### Plated Through Via





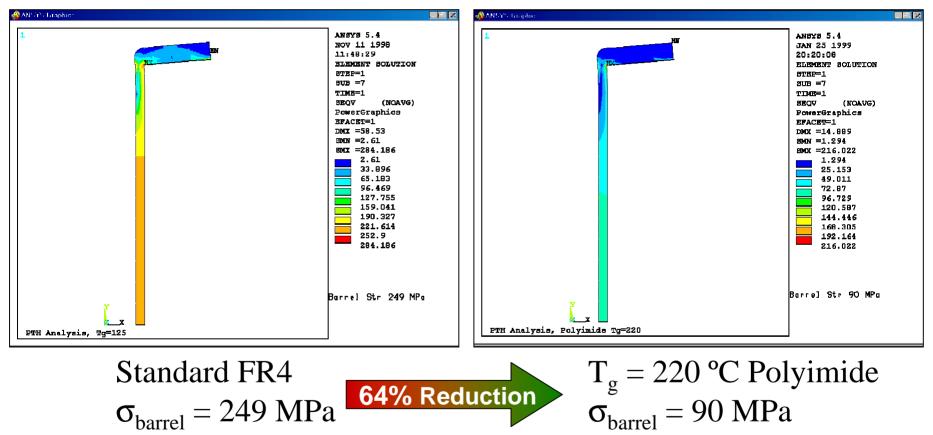
Barrel Stress > Ultimate Strength (~260MPa), so predicts original design will fail. *Conclusion:* Analysis before mfg. would have prevented scrap & delays.




### USE OF ENGINEERING TOOLS CASE STUDY 2

- TEN LAYER DOUBLE BLIND VIA
- EPOXY, FIVE CORE, 80 MILS THICK
- COST SENSITIVE
- RELIABILITY ISSUES AFTER
  THERMAL CYCLE
- FATIGUE ANALYSIS PREDICTED
  RELIABILITY WITH POLYIMIDE




### **CASE 2 LAY- UP**

### • LAYERS 1-5 & 6-10 ARE BLIND

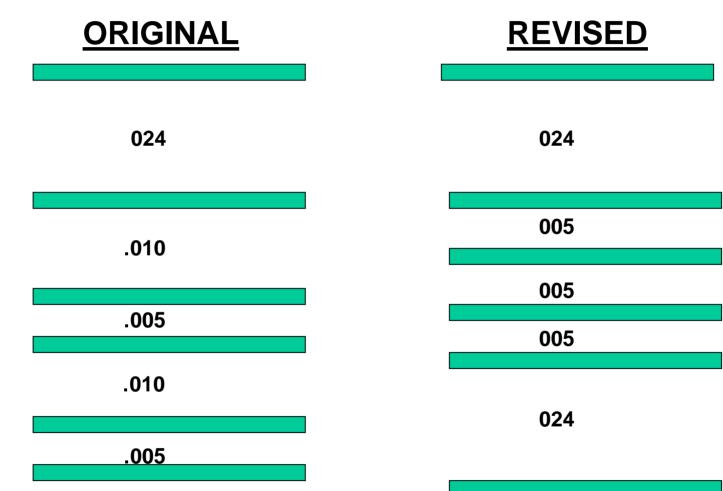




### **Case 2 Analysis Results**



*Conclusion:* Polyimide design chosen to reduce stress and increase reliability



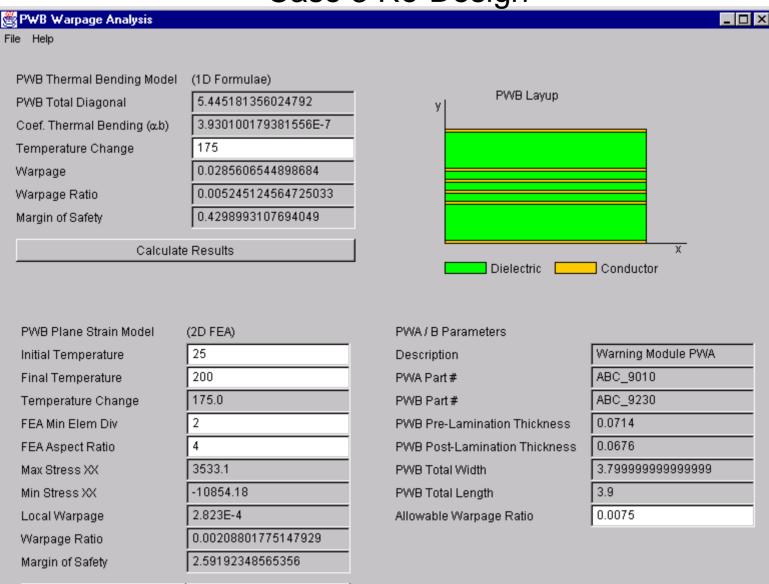

# USE OF ENGINEERING TOOLS CASE STUDY 3

- SIX LAYER, 67 MILS THICK WITH NON-SYMMETRICAL Z AXIS
- SEVERE WARP
- WARP ANALYSIS PREDICTED
  THERMAL DISTORTION
- MODELED CONSTRUCTION
  VARIABLES REDUCED
  DISTORTION



### **CASE 3 LAY- UP**




### Case 3 Original

| DV/D V/ A                      |                      |                               |                      |
|--------------------------------|----------------------|-------------------------------|----------------------|
| PWB Warpage Analysis<br>e Help |                      |                               |                      |
| e nep                          |                      |                               |                      |
| PWB Thermal Bending Model      | (1D Formulae)        |                               |                      |
| PWB Total Diagonal             | 5.445181356024792    | PWB Layup                     |                      |
| Coef. Thermal Bending (α.b)    | 0.005570211573007959 |                               |                      |
| Temperature Change             | 175                  |                               |                      |
| Warpage                        | 463.1800528757218    |                               |                      |
| Warpage Ratio                  | 85.06237397644043    |                               |                      |
| Margin of Safety               | -0.9999118294064767  |                               |                      |
| Colculat                       | e Results            |                               | X                    |
|                                |                      | Dielectric                    | Conductor            |
|                                |                      |                               |                      |
| PWB Plane Strain Model         | (2D FEA)             | PWA / B Parameters            |                      |
| Initial Temperature            | 25                   | Description                   | Warning Module PWA   |
| Final Temperature              | 200                  | PWA Part#                     | ABC_9010             |
| Temperature Change             | 175.0                | PWB Part#                     | ABC_9230             |
| FEA Min Elem Div               | 2                    | PWB Pre-Lamination Thickness  | 0.0624               |
| FEA Aspect Ratio               | 4                    | PWB Post-Lamination Thickness | 0.057599999999999999 |
| Max Stress XX                  | 3557.52              | PWB Total Width               | 3.7999999999999999   |
| Min Stress XX                  | -9867.29             | PWB Total Length              | 3.9                  |
| Local Warpage                  | 2.236E-4             | Allowable Warpage Ratio       | 0.0075               |
| Warpage Ratio                  | 0.001940972222222224 |                               |                      |
| Margin of Safety               | 2.8640429338103752   |                               |                      |
| Create FEA Input               | View FEA Input       |                               |                      |

Calculate FEA Results

View Graphical Results

#### Case 3 Re-Design





## CONCLUSIONS

- WE ARE A SMALL BUSINESS WITH LIMITED ENGRG. RESOURCES
- U ENGINEER HAS PERMITTED US TO SOLVE SOME COMPLEX PROBLEMS
- WE NOW HAVE THE CAPABILITY TO PROVIDE A VALUABLE SERVICE TO THE CUSTOMER