
Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

An Object-Oriented Parser-based
Finite Element Analysis Tool Interface

Donald Koo, Russell S. Peak, Robert E. Fulton

Georgia Institute of Technology
CALS Technology Center

Engineering Information System Lab
http://eislab.gatech.edu/

ABSTRACT

To better integrate engineering design and analysis, the multi-representation architecture (MRA) and
related methodology have been developed to represent the information transformations between CAD and
CAE models [1, 2]. The MRA consists of four representations for increased modularity and flexibility. As
one of the representations, solution method models (SMMs) are object-oriented wrappings of tool-specific
inputs and outputs that enable highly automated operation of general purpose analysis tools. Outer contexts
in the MRA create SMMs from product data and map SMM results back into product-specific terms.

This paper discusses the post-processing aspects of SMMs for finite element analysis (FEA) tools. In this
scenario, an SMM dispatches a job to an FEA tool, runs the tool, retrieves results, and stores them in the
SMM internal database, which is based on a STEP EXPRESS-G schema. Higher-level context objects in
the MRA can then query SMM objects to extract summary results such as stress extrema. These concepts
were implemented in an analysis integration toolkit, DaiTools™, for two FEA tools (ANSYS and CADAS)
with the object-oriented T-gen translator generator tool. This automation process is illustrated with circuit
board solder joint analysis and warpage analysis examples. Results show this approach provides effective
manipulation and query capabilities that enable enhanced analysis tool integration.

Keywords: CAE-CAD Integration, Object-Oriented, FEA, ANSYS, STEP, EXPRESS-G, MRA, SMM

1. INTRODUCTION

Technological advances in computing technology have made a variety of tools available for solving
complicated problems. One significant capability is the finite element analysis (FEA) tool. Currently,
there are number of FEA packages available. They are either bundled with solid modeling tools or
distributed as stand-alone packages. When an FEA tool is bundled with solid modeling tools, it is generally
used to validate designs or to optimize designs. Stand-alone packages generally have more capabilities and
thus are used for more thorough analyses. One problem with FEA software is that it can be quite
complicated to use. Engineers who have some knowledge of finite element theory are needed to use them
and interpret the results. Also it can be time consuming to develop a valid analyzable model. And lastly,
these software packages are generally too expensive for small and medium-sized enterprises (SMEs).

2. DAITOOLS™ AND THE MULTI-REPRESENTATION ARCHITECTURE

DaiTools™ is an Internet-based software tool developed by the Engineering Information Systems Lab (EIS
Lab) at the Georgia Institute of Technology. One application has been providing analysis services such as
product-specific FEA to SMEs through the Internet [3, 4]. Data exchange on the Internet is performed by
the means of standard formats like STEP. After a STEP file is uploaded to the server, DaiTools™ creates a
FEA model based on the STEP product data and runs the FEA analysis program which may be located on
the same server or on another machine accessible to the server. Since typically only extrema results are

http://eislab.gatech.edu/

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

needed, there is an option for returning them over the Internet instead of transferring large result files. This
paper focuses on how the output produced by a specific FEA program is handled in an object-oriented
manner by the DaiTools™ software1.

DaiTools™ employs a design-analysis integration strategy called the Multi-Representation Architecture
(MRA) [1] (Figure 1) to associate design models with analysis models. In the MRA, product-specific
analysis idealizations are captured in the form of reusable product model-based analysis models (PBAMs).
Analysis building block (ABBs) are product-independent analysis objects with high content of engineering
semantics. Solution method models (SMMs) are spawned from ABBs. SMMs are method specific
solution objects. SMMs wrap analysis tools such as FEA programs to allow automation of ‘routine
analysis processes’ [6]. DaiTools™, as one implementation of MRA concepts, integrates CAD information
(e.g. geometry) along with other information such as a material database to construct an analyzable product
model (APM). The necessary data can then be extracted to build analysis models such as finite element
models.

1 Solution Method Model

ΨABB SMM

2 Analysis Building Block

4 Product Model-Based Analysis Model3

SMMABB
ΦPM ABB

PBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint
Component

PWB

body3
body2

body1

body4

T0

Printed Wiring Board (PWB)

Solder
JointComponent

Analyzable
Product Model

Figure 1. Multi-Representation Architecture (MRA) for Analysis Integration

3. CAD-CAE INTEGRATION

Analysis programs often are designed as user-controlled applications and therefore have little capability to
be used automatically by other programs. Most programs offer command line operation with the ability to
process optional input arguments. The outputs that are produced, in both graphical-user-interface (GUI)
and batch mode, generally consist of a database file and text files. The database files are often program-
specific and typically restricted to reuse by the programs that produced them. The text outputs are intended
to give the user information concerning the executed job (e.g. error, log). Usually, in order to access the
analysis results for post-processing, the user is required to access the database file by running the program
and open the data through GUIs. Also, more actions via GUIs are required to carefully analyze the result.

In order to integrate a FEA program with outer context tools like DaiTools™, the FEA program can be run
in batch mode. But running the FEA program in batch mode limits user interaction in that any unplanned
actions are disallowed, because the outer context automatically creates the inputs and uses the outputs.
Without a GUI, in batch mode the user is unable to see the solution result directly and therefore an alternate
way of processing the FEA data is needed. Since methods for direct interaction with the database file are
generally not provided, processing the output file generated by the FEA program in a separate program is
often the only integration strategy. Most FEA programs have some capabilities to produce text files of
node and element data. However, such files are intended for human use in that they contain descriptive text

1 This paper primarily describes implementation with DaiTools™, a first generation analysis integration toolkit
implemented in Smalltalk [3]. XaiTools™ is a second-generation Java-based implementation of extended MRA
concepts [5].

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

along with the data. And lastly, because the data is in plain numerical text, there is no way to visualize the
result or make associations among scattered data.

The end product of the post-processed FEA data is required to have communication ability with the outer
context wrapper tools like the DaiTools™. Automated interpretation of the analysis results in product-
specific terms is imperative in order to assist designers who do not have knowledge of FEA theory. Such
capabilities enable designers and analysts to access FEA results within tools like DaiTools™ without
having to interpret the data themselves.

While the techniques declared in this paper have been employed with both CADAS [7] and ANSYS [8]
FEA tools [1], this paper focuses on more recent work with SMM post-processing for the ANSYS case.
The ANSYS FEA program that is used by the DaiTools™ software is ANSYS v5.3. ANSYS is a stand
alone FEA software and has capabilities to produce output files with some user control as well as command
line input operation. DaiTools™ software is written in an object-oriented language called Smalltalk in a
development environment called VisualWorks v2.5.

ANSYS has the ability to produce a user-defined output file that contains FEA solution data. The typical
output file contains system messages such as headers, titles, and notes. Column headings, numbers, and
numerical values follow these. Some system messages and column headings cyclically reappear to allow
the human reader to keep track of things. Such messages are unnecessary for automated use by outer
contexts and only complicate the processes for importing such data. Therefore the system message parts
must be cleaned before processing the data file. The resulting file should only have element and node
numbers with attributes and solution data along with column headings identifying each number and
numerical values. A consistent file format allows for easier transition toward post-processing of the data
file.

By parsing the solution data into a database, interpretation of the data for the user can be supported.
Scattered data can be combined and sorted into a structured format with relationships established. A series
of query commands combined with internal methods can prepare the data to be presented to the user in a
predefined way. By making available the outcome of such post-processing for tools like DaiTools™, an
automation loop, as shown in the Figure 2, can be achieved.

Solution Method Model

Preprocessor

DaiToolsTM

Post-Processor

FEA ToolsFiles

Input &
Control

Output

Preprocessor

Database

Solver

File TranslatorOO Database

Template
& User
Input

Parser, etc

GUI

ABBs

PBAM

FEMeshModel

Po
st

Pr
e

Ex
tre

m
a

Outer Context

Unsolved
Mesh-model

Solved
Mesh-model

Post-processor

U
se

r

Focus of this paper (SMM post-processing)

Figure 2. Integration Loop for Highly Automated FEA Tool Usage in an MRA Context

Two ways to model the database for such applications have been investigated here. One is to develop an
object-oriented database and the other is to use a commercially available relational database. The object-
oriented method was chosen for this application because it is more versatile, and as DaiTools™ is an
object-oriented program, better compatibility is achieved.

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

4. INTEGRATION TOOL COMPONENTS

4.1 An Information Model for Basic FEA Mesh Models

The data schema to represent FEA solution data was developed using EXPRESS-G, an object-oriented data
modeling language developed for STEP [9]. The resulting data structure for the FEA results was
implemented in the VisualWorks Smalltalk environment. The object-oriented data form a
communicational object entity that holds attributes and operation methods. Such an object is called a class
and the classes for this FEA solution data model are sorted into two categories. The FEA-MeshModels
category has five classes and the FEA-Elements category has three application dependent classes. The
classes in FEA-MeshModels category are FEMeshModel, FENode, FEGroup, FEMaterial, and
FEExtremaSet. The classes in FEA-Elements category are FEElement and its subclasses, PlanarElement
and SolidElement2. The organization among these classes is given in the Express-G model in Figure 3.

Figure 3. EXPRESS-G schema for Basic FEA MeshModels

All of the output data from the FEA tools are stored within instances of the class FEMeshModel. Nodes,
elements, materials, groups, and extrema-sets are attributes of the FEMeshModel. The EXPRESS ‘L[1:?]’
notation shown in Figure 3 indicates ordered lists, which were implemented in Smalltalk as collections
called dictionaries. The keys to the dictionary, such as node number, act as the link to the referring node
object. For example, 10 in the dictionary of nodes refers to an instance of a FENode whose node number is
10. As it can be seen from Figure 3, the attributes of FEMeshModel, which are materials, groups,
elements, and nodes, are all EXPRESS lists. Also, such relationships were implemented with an inverse
capability. When an object such as an element is part of a material object, the material object stores the
element in its element attribute list. Concurrently, the element object’s material attribute points back to the
material to form the inverse of the relation.

The element entities (node, element, and material) have attributes like 'node number' as indicated in Figure
3. The FEGroup is a predefined grouping of elements of interest. It can be sub-assemblies of a part or just
a section of a part with heterogeneous materials. The function of FEGroup is to prepare the results to be
presented to the user. Customarily searched results such as maximum and minimum values are retrieved

2 In EXPRESS-G notation, bold lines indicated the superclass-subclass (is-a) relation, while regular lines depict the
entity-attribute (has-a) relation.

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

and stored for use in outer contexts (e.g. a PBAM that needs to know extreme solder joint shear stress). As
not all FEA tools identify such extrema, this procedure is performed in FEExtremaSet, which is part of
each FEGroup. The FEExtremaSet object contains a dictionary of maximum and minimum nodes for every
dimension of every field. The FENode contains nodal data in an array format. Depending on the field, the
array format is either vector (x, y, z) or symmetric tensor (x, y, z, xy, yz, xz). The nodal data is used to
determine extrema-set data in SMM post-processing.

4.2 Format of ANSYS Output

To eliminate system messages and headers printed in the ANSYS output files, a set of available post-
processing commands form the ANSYS POST1 section that is appended to the ANSYS input job file.
Typical ANSYS data output format code is listed in Figure 4. These POST1 commands are needed to
create an output format that can be automatically processed by SMMs.

ESEL, MAT, 3
/HEADER,off,off,off,off,on,off
/OUTPUT,sj-deformation-3D,OUT
*vwrite,'3D','SOLID45'
(2a,3x,8a)
elist,all,,,0,0
PRNSOL,EPEL,COMP
PRNSOL,S,COMP
PRNSOL,DOF
/OUTPUT

Figure 4. ANSYS POST1 output commands to aid SMM results processing

The first line selects the material of interest. ANSYS v5.3 can output data for only one material type at a
time. If more than one material is selected, ANSYS will insert a warning message at the material transition
point. Such insertion of messages requires additional coding for the program that will read in the output
file. Another way to handle multi material models is to create separate files for each material. The second
option was chosen in this case. The first line selects the material type. The ‘/HEADER’ line eliminates all
the header information intended for human readers that SMMs do not need (except the column headings).
The ‘/OUTPUT’ line creates an output file according to the specified filename with the .OUT extension.
The ‘*vwrite’ line inserts elemental information that is not automatically generated. The next line is a
format specification for the inserted elemental information. The ‘elist’ line creates a list of elements with
information such as material number and node numbers. The ’PRNSOL’ command line creates a list of
nodal solutions for the specified field where EPEL, S, and DOF are strain, stress, and displacement
respectively. Another ‘/OUTPUT’ signals the end of the file. These commands produce output like that in
the lower right quadrant of Figure 5.

4.3 Importing FEA Results via a T-gen-created File Translator

In order to create finite element objects from the ANSYS output for use in SMMs, a tool called T-gen was
used to create a File Translator (Figure 2), which includes a scanner, a parser, and a builder. T-gen is a
general-purpose object-oriented tool for the automatic generation of string-to-object translators [10]. It is
written in Smalltalk for the VisualWorks environment. Finite element objects are created and populated by
processing an ANSYS output file in the translator created by T-gen.

To parse ANSYS output data into Smalltalk objects, a T-gen translator is created. First, tokens are
specified in the Token-Class-Specs section (upper left-hand pane) of the T-gen window (Figure 5)
according to data types found in the ANSYS output such as numbers and characters. The contexts that
match the tokens are recognized by the scanner and then passed to the parser. The sequence of the how the
text files are scanned and parsed is determined in the construction of a context-free-grammar (CFG). The
grammar tree for the ANSYS output file is constructed according to the output data format specified in the
Grammar-Specs section (lower left-hand pane of Figure 5). The grammar also uses non-terminals to direct
the flow of the scanning process and directives to perform operations on the scanned strings. For each non-
terminal on the left-hand side, the flow rule is given on the right-hand side composed of terminals (tokens

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

and literal strings) and non-terminals. The directives, which are required for every terminal and non-
terminal on the right-hand side, have production methods associated with them. The collection of directives
and their production methods make up the builder object. The production methods operate on string
entities read by the scanner and convert them into finite element objects and populate their attributes.
These methods, which were encoded in Smalltalk, place the generated objects as attributes of the
FEMeshModel, which has its own methods to post-process the data once it is parsed. After specifying the
tokens and CFG, T-gen generates and installs a ‘scanner’, which reads and passes the recognized strings of
the input text, and a ‘parser’, which checks the validity of tokens and operates on them. To test the
translator, sample data can be entered into the input section (lower right-hand pane) of the T-gen window.
Each line of the test input is scanned by the corresponding grammar expressions. When the translator hits a
new line with different grammatical context, the non-terminals direct the translator to the next grammar
expression according to predefined order. For repeated input lines, the grammar simulates looping by
calling back its own grammar expression.

A Parse-Tree-Builder class called AnsysDataBuilder was constructed using Smalltalk. It includes the
collection of production methods specified for the directives of the T-gen grammar spec, and it utilizes the
Ansys-specific scanner and parser mentioned above. It also contains other methods that support the parsing
process. The production method names used as directives in the T-gen grammar are sorted under the
‘production processing’ protocol. These methods perform preliminary operations such as creating a data
object to store the ANSYS data. They have other methods to assist the production, most of which are
specified under the ‘production support’. The resulting finite element objects are post-processed to extract
maximums and minimums by methods specified under the ‘pre/postprocessing’.

As the ANSYS output data is being scanned, the builder executes the following operations to parse the
data. First, it creates a FEMeshModel instance, which will act as the root object. The first line of the
sample data has ‘3D’ and ‘SOLID45’ (Figure 5, lower right pane). These are stored in the builder for
determining element type. Then the headers and column heading are ignored, because the builder knows
by the grammar specification that the first set of data is a list of elements. As the elements are encountered,
an instance of the class FEElement is created for every element. The dimension that was stored, ‘3D’ in
this case, is used to determine if the element is a SolidElement or a PlanarElement. The material number is
temporarily stored in the FEElement as material number and group number (unless specified) for future
post-processing. Then the FENode instances are created according to the scanned node numbers. These
nodes are gathered in the dictionary and placed as the ‘nodes’ attribute of the FEElement. Simultaneously,
as the FEElement and FENode are created, the master lists that contain all of the elements and nodes for the
whole finite element model are created as dictionaries and placed of as ‘elements’ and ‘nodes’ attributes of
the FEMeshModel. Since some of the nodes are shared by the elements, the existence of a scanned node is
checked against the master list to avoid duplicating FENode instances.

After all the elements and nodes are created, the nodal values for specified fields such as strain, stress, and
displacement are parsed. In order to identify which list belongs to which field, the field identifier such as
‘EPEL’ (strain), ‘S’ (stress), and ‘DOF’ (displacement) from list headings is stored in the builder attribute
called ‘currentField’. The ‘currentField’ value is replaced whenever another field is encountered. For
example, while the ‘currentField’ has ‘S’ as its value, the scanned numbers are parsed as the stress values
of respective nodes.

Following the completion of parsing, translator post-processing takes place (Figure 2). During translator
post-processing, FEMaterial, FEGroup, and FEExtremaSet are created. When post-processing is initiated,
the FEElement instances are bundled according to their material number and group number and placed in
FEMaterial and FEGroup as dictionaries. The FEMaterial and FEGroup instances replace the material
number and group number in FEElement instance to establish object links. The creation of a FEGroup
instance triggers the creation of an associated FEExtremaSet instance. To create FEExtremaSet instances,
nodal values of every field in every dimension are compared against one another to extract nodes with
maximum and minimum values. These extracted maximum and minimum nodes are sorted in dictionaries
to complete translation post-processing.

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

Figure 5. Creating an ANSYS SMM File Translator in T-gen (clockwise from top left: Token Specs, Transcript, Test Input Data, Grammar Specs)

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

5. TEST CASES

Three examples have been tested for the object-oriented method. They are 2D-solder-joint-deformation-
model, 3D-solder-joint-deformation-model, and 2D-pwb-warpage-model PBAMs with ABBs that generate
ANSYS SMMs. Within these PBAM/ABB contexts, the resulting ANSYS SMMs create input files that are
sent to the ANSYS FEA tool in batch mode (Figure 2). Upon completion of the FEA processes, the FEA
tool produces the output files. The context SMM instance then calls the T-gen-created File Translator to
parse the output values into the DaiTools™ environment. After FEA post-processed results such as the
ones shown graphically in Figure 6, Figure 8, and Figure 10 are imported, SMMs extract critical values
such as maximum and minimum stress and strain values. The context ABBs/PBAMs then transform these
FEA-specific terms into product specific-terms and present them via GUIs such as Figure 7, Figure 9, and
Figure 11. The GUIs shown in Figure 7 and Figure 9 are from the same catalogue of solder joint
deformation analysis modules (PBAMs). Figure 11 is a catalogue of PWB warpage analysis modules.
Other aspects of outer context post-processing included functions such as calculating overall PWB
deformation, PWB warpage ratio, and percent difference versus allowables. These results are also
displayed and provided as criteria by which the user can evaluate the product design.

Figure 6. 2D-solder-joint-deformation model

Figure 7. DaiTools™ GUI for 2D-solder-joint model

Figure 8. 3D-solder-joint-deformation model

Figure 9. DaiTools™ GUI for 3D-solder-joint-model

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

Figure 10. 2D-pwb-warpage-model Figure 11. DatiTools™ GUI for PWB warpage model

The successful post-processing operation exhibited in the test cases verified feasibility of highly automated
analysis tool integration. As the user operates from semantically rich analysis module GUIs like Figure 11,
no direct user interaction is needed to create FEA models and run the FEA tools. No user interaction was
required also in the loop from the analysis tool back to these product-specific GUIs. Finally, note that the
same ANSYS SMM class is usable by all three of these examples, as well as by other analysis modules.

6. DISCUSSION

The SMM post-processing loop (Figure 2) essentially starts during the design stage of the analysis
integration tool. It affects the design of extensions for the object-oriented database based on what query
functions need to be implemented. The extensions such as query object functions are determined by what
information the outer context needs to display in the analysis module catalog GUIs (e.g. stress, strain, and
deformation extrema as in Figure 7, Figure 9, and Figure 11). Usually, they are data needed for evaluation
criterion embedded in the GUI. Another part of SMM post-processing must be considered during design of
the FEA job template (used to create the input and control file per Figure 2). The FEA pre-processing
model can be designed with groups, etc. to facilitate obtaining results in specific regions of the model. In
the FEA post-processing control section, commands must be utilized to create a formatted output file
compatible with the File Translator, which will import the file for outer context use. Commands to extract
needed data from specific regions may also be specified. Thus the SMM post-processing loop is pulled by
analysis results needs.

Two approaches of SMM post-processing interface to solution tool were investigated. One is an extensive
approach where it imports all of node and element data for specified regions. This approach is suited for
FEA tools with limited post-processing capabilities. Although ANSYS provides functions like extracting
extrema, this approach was investigated to take less capable applications into consideration. Another
approach is a minimal approach where the SMM utilizes post-processing functions provided by the FEA
application. With ANSYS, only extrema can be extracted and imported. This approach has been
implemented in the next generation tool called XaiTools™ with ANSYS v5.4 as the solution tool.
XaiTools™ is a Java-based tool and it can be expanded to implement the extensive approach with tools like
JLex [11]. While the minimal approach can speed up processing time, the extensive approach provides
greater data handling flexibility. The extensive approach minimizes possible hindrances caused by limited
capabilities in FEA applications. Also it leaves room for more outer context post-processing if needed.
This shows that it is sometimes best to implement evaluation capabilities in an outer context post-
processing tools rather than have it output from analysis tools, like FEA applications, using their
capabilities.

The use of an object-oriented approach showed more potential for semantically rich data processing in the
extensive approach. By forming the data into objects, more dynamic data processing was enabled. Unlike

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

other types of representations, objects capture both data and methods to execute functions on their data.
Objects also have capabilities to communicate with other objects. Therefore, instead of issuing queries
every time sets of data are needed, query objects (such as FE ExtremaSet shown in Figure 3) can be created
to store references to the needed data.

The two FEA tool interaction methods that were evaluated are full batch mode and hybrid mode. Full
batch mode supports little or no user interaction. In hybrid (or relaxed) mode, the SMM controls tool input
and output but allows user interaction in between. The major advantage of hybrid mode is that users are
not restricted by predefined control of outer contexts. The user can take advantage of the FEA tool post-
processing functions for graphical and detailed processing, and then return control to the SMM for use in
outer contexts. The advantages and disadvantages of the two modes are compared in Table 1.

Full Batch Mode Hybrid Mode
User Interaction Little or none Allowed while tool is in operation
• FEA tool GUI Not displayed Displayed
• Use FEA tool functions Not allowed Allowed during post-processing
• Results Graphic Typically not shown Displayed on GUI
• Graphics saving option Postscript (ANSYS) Tiff, VRML, Postscript (ANSYS)
Iteration for optimization Fast Tedious
Speed Fast Slow
Tool knowledge Not required Required
Security Control High Low

Table 1. Comparison of Full Batch Mode and Hybrid Mode

System security is usually a concern when running an Internet based tool and when usage by non-experts is
needed. In hybrid mode, users have access to the full functionality of the FEA tool. This gives the user an
opportunity to perform functions that are irrelevant or potentially misleading to the DaiTools™ outer
context (either accidentally or intentionally). In contrast, when FEA tools like ANSYS are initiated by
SMMs in batch mode, user interaction with the tool can be completely eliminated. This prevents analysis
tool abuse such as running jobs other than the one dispatched by the outer context. In batch mode, only the
job sent by DaiTools™ is executed.

One drawback to complete integration of FEA tools like ANSYS is that all the functions available via
interactive GUIs may not be available programmatically via batch or hybrid usage. This can be especially
true for graphics functions. By running jobs in batch mode, no interactive graphics are displayed.
Typically, when using FEA, the user expects to see graphic results to see trends in the analysis results.
Although ANSYS has capabilities to produce a variety of picture files in interactive mode, only the
PostScript format is supported in batch mode. General programming languages do not readily support
displaying PostScript images. They require a graphics library to display picture files. Libraries for other
formats like GIF and JPEG are more widely available than PostScript library. Thus in order to display the
images within the DaiTools™, an image converter needs to be integrated. Another option would be to
wrap an image-viewing program to display the images.

To deal with various vendor-specific tools, typically vendor-specific SMMs are needed. While the same
object-oriented database structure (FEMeshModel in Figure 2) can typically be reused, the File Translator
most often must be tool vendor-specific. Because different CAE tools support different output formats, a
translator has to be configured for each of those formats. The advantage of using an object-oriented
language for the translator is that even if the grammars are changed, much of the builder code can be reused
via inheritance. Therefore it is advantageous to develop robust builder code and change only the grammar
to accommodate other CAE tools. Such are the problems with integrating multiple vendor-specific tools,
which suggests a need for standards to help the outer context to be less vendor-specific. Table 2 shows
candidate standards that would ease outer context usage if supported by CAE tool vendors.

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

Aspect Potential Technology
Tool input format (preprocessor model) STEP AP209
Tool control CORBA, APIs, Java
Tool output format (solved mesh-model) : data STEP AP209, XML
 : graphics VRML, JPEG

 Table 2. Suggested standards to help tool integration with outer contexts

Figure 2 illustrates that CAE tool integration is achieved by means of file exchange. This part of the
automation loop can benefit from standards such as STEP AP209 [12]. In this study, three files, ANSYS
(template, input, and output) are utilized for tool communication. Constructing multiple vendor-specific
translators for tool outputs should be minimized by use of such standards.

In another approach, a commercial relational database manager, ORACLE/SQL, was used to implement the
EXPRESS-G data structure shown in Figure 3. This approach was not as natural as with an object-oriented
language like Smalltalk or Java due to the object nature of EXPRESS-G models.

7. CONCLUDING REMARKS

This paper presents an integration loop for the automation scenario shown in Figure 2. It focuses on
solution method model (SMM) post-processing aspects and discusses how detailed FEA results can be
translated into objects for usage in higher-level design contexts. A distinction of this paper is how such
outer-contexts control FEA tool operation in a highly automated manner as opposed to the typical user-
controlled approach. An ANSYS SMM is described along with usage examples for solder joint
deformation and PWB warpage. Results indicate that advantages of this approach include:

• Highly automated usage of results in outer contexts like product design
• Reusability by different types of analysis models
• Consistent information interface to FEA tools from diverse vendors
• Integration with other higher-level contexts like optimization

The integration of ANSYS into DaiTools™ successfully demonstrated a complete process automation loop.
Based on this and other examples, complete analysis tool integration using a wrapping approach is possible
for other CAE tools. With this approach tedious analysis tasks can be automated, particularly in the context
of product-specific analysis modules, thus reducing design time and increasing process consistency.

ACKNOWLEDGEMENTS

This work was funded in part in the ProAM project, entitled Product Data-Driven Analysis in a Missile
Supply Chain [4]. The U. S. Department of Defense Joint Electronic Commerce Program Office (JECPO)
sponsored this effort with the Army Aviation and Missile Command (AMCOM) as primary stakeholder.
Under subcontract to Concurrent Technologies Corp. through the Atlanta Electronic Commerce Resource
Center (AECRC), ProAM focused on improving missile electronics through advanced engineering analysis
integration and delivery via media like http://u-engineer.com/. This Georgia Tech-led effort has addressed
barriers to small & medium-sized enterprise (SME) analysis of product physical behavior with the
involvement of Circuit Express and S3, two SMEs in the AMCOM supply chain. The authors wish to
acknowledge their colleagues and ProAM team members for help and feedback in this effort, with special
thanks to Miyako Wilson and Andrew Scholand.

http://u-engineer.com/

Koo, D.; Peak, R.S.; Fulton, R.E. (1999) An Object-Oriented Parser-based Finite Element Analysis Tool Interface,
Invited Paper for Intelligent Systems in Design and Manufacturing II,

SPIE The International Society for Optical Engineering.
Photonics EastR 19-22 Sept. 1999 Hynes Convention Center, Boston, Mass

REFERENCES3

1. Peak, R.S., R.E. Fulton, I. Nishigaki, N. Okamoto, Integrating Engineering Design and Analysis Using
a Multi-Representation Approach. Engineering with Computers, 1998. Volume 14, Number 2.: p. 93-
114.

2. Peak, R.S., A.J. Scholand, D.R. Tamburini, R.E. Fulton, Towards the Routinization of Engineering
Analysis to Support Product Design. Intl. J. Computer Applications in Technology, 1999. Vol. 12,
No. 1 (Invited Paper for Special Issue: Advanced Product Data Management Supporting Product Life-
Cycle Activities) p. 1-15.

3. Peak, R.S., R.E. Fulton, and S.K. Sitaraman, Thermomechanical CAD/CAE Integration in the TIGER
PWA Toolset, in Advances in Electronic Packaging-1997, E. Suhir and et al., Editors. 1997: Kohala
Coast, Hawaii. p. 957-962.

4. ProAM, 1999, EIS Lab, CALS Technology Center, Georgia Institute of Technology.
5. XaiToolsTM, 1999, EIS Lab, CALS Technology Center, Georgia Institute of Technology.
6. Peak, R.S., A.J. Scholand, and R.E. Fulton, On the Routinization of Analysis for Physical Design, in

Application of CAE/CAD to Electronic Systems, D. Agonafer and et al., Editors. 1996: Atlanta. p. 73-
82.

7. CADAS Ver. P4 User's Manual, 1993, Hitachi Ltd.: Hitachi-shi, Japan.
8. ANSYS User's Guide, 1990, Swanson Analysis Systems Inc.: Houston PA.
9. ISO 10303-11, Industrial Automation Systems and Integration - Product Data Representation and

Exchange - Part 11: Description Methods: The EXPRESS Language Reference Manual, 1994,
International Organization for Standardization.

10. Graver, J.O., T-gen User's Guide, 1992, Computer and Information Science, University of Florida,
Gainesville, FL.

11. Elliot, B., JLex: A Lexical Analyzer Generator for Java, 1997:
 www.cs.princeton.edu/~appel/modern/java/JLex/manual.html.

12. ISO 10303-209, Industrial Automation Systems and Integration - Product Data Representation and
Exchange - Part 209, Application Protocol: Composite and metallic structural analysis and related
design, . 1996, International Organization for Standardization: Geneva, Switzerland.

3 Some references and project information are available on-line at http://eislab.gatech.edu/

	Abstract
	1. Introduction
	2. DaiTools™ and the Multi-Representation Architecture
	3. CAD-CAE Integration
	4. Integration Tool Components
	4.1 An Information Model for Basic FEA Mesh Models
	4.2 Format of ANSYS Output
	4.3 Importing FEA Results via a T-gen-created File Translator

	5. Test Cases
	6. Discussion
	7. Concluding Remarks
	Acknowledgements
	References

