
1

Nov. 27, 2000 Submission for:
First MIT Conference on Computational Fluid and Structural Mechanics (CFSM) - 2001

Enhancing Engineering Design and Analysis Interoperability
Part 2: A High Diversity Example

Russell S. Peak and Miyako W. Wilson
Georgia Institute of Technology

Engineering Information Systems Lab
813 Ferst Drive

Atlanta, GA 30332-0560 USA
russell.peak@eislab.gatech.edu

miyako.wilson@eislab.gatech.edu
http://eislab.gatech.edu/

Abstract
This is Part 2 in a series about knowledge representations that enable enhanced cooperation
between engineering design and analysis models.  A basic flap link example shows how the
multi-representation architecture (MRA) analysis integration strategy supports computing
environments that have a diversity of analysis fidelities, physical behaviors, and CAD/CAE
tools.  The constrained object (COB) technique from Part 1 provides the MRA with reusable,
modular, multi-directional capabilities.
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1 Introduction
At this conference Wilson et al. [1] overviews constrained objects (COBs) as an object-oriented
representation of engineering concepts (Part 1), and Dreisbach and Peak [2] discuss COB-based
steps towards multi-functional optimization (MFO) (Part 3).  This paper (Part 2) presents a basic
example to show how COBs facilitate design-analysis integration for simulation-based design
(SBD) as a step towards MFO.  In this context, simulation and analysis refer to modeling
physical behavior such as stress or temperature.

Peak [3] overviews recent developments in X-analysis integration1 (XAI) technology including
the COB-based multi-representation architecture (MRA).  The MRA achieves advanced CAD-
CAE interoperability in environments that have a diversity of tools and models.  Interoperability
can be defined as the ability for tools and models to communicate and share information in a
seamless computer-based manner.

                                                
1 X = design, manufacture, sustainment, etc.
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2 Flap Link Tutorial Example
Figure 1 overviews the main MRA concepts via an example.  Traditional CAD tools (left side)
are used to define the manufacturable description of this product.  On the right are traditional
CAE tools that solve discretized and symbolic mathematical problems.  In between are the four
main types of MRA objects: solution method models (SMMs), analysis building blocks (ABBs),
analyzable product models (APMs), and context-based analysis models (CBAMs).  These are
stepping stones to help connect diverse tools and models in a flexible and modular manner.

Analyzable product models (APMs) [4] help coordinate and merge design-oriented details
coming from possibly many design tools and libraries.  The lower-middle portion of Figure 1
shows the flap link APM constraint schematic, which has objects such as sleeves, shaft, cross-
section, and ribs.  The blue design-oriented relations show how design parameters like sleeve
width and shaft width are related.

APMs add idealizations (red) that may be used by multiple analysis models.  For example, the
1D torsion and extensional analysis models (Figure 1) both use a parameter called effective
length, Leff.  This parameter is the distance between the edges of the sleeves; it is a geometric
idealization of the main material region connected by the sleeves.  While such a parameter is
useful from an analysis point of view, it would not likely be included as a CAD parameter used
to manufacture this part.  Yet it is related to such parameters, so the APM provides a place to
capture such relations.

Analysis building blocks (ABBs) represent analytical engineering concepts as semantically rich
objects independent of solution method and product domain.  The upper-middle portion of
Figure 1 contains constraint schematics for a material model ABB and two continuum ABBs.
The continuum ABBs are extensional and torsional rods, as covered in undergraduate mechanics
courses.  Applying object-oriented reasoning similar to that in [1], one recognizes that these and
other continuum primitives are built from the same linear elastic stress-strain-temperature
concepts.  Thus the 1D linear elastic model ABB captures this knowledge to reduce manual re-
creation, provide modularity, and facilitate reusability.

Whereas ABBs represent concepts at the analytical level, solution method models (SMMs)
represent them at the detailed solution method level.  SMMs can be viewed as object-oriented
wrappers around CAE solution tools that obtain analysis results in a highly automated manner
(Figure 1 far right).  They support white box reuse of existing tools (e.g., FEA tools, math tools,
and in-house codes) within a uniform constraint-based framework.  ABBs generate SMMs based
on solution technique-specific considerations such as symmetry and mesh density.

Context-based analysis models (CBAMs) explicitly represent the fine-grained associativity
between a design model and its possibly many analysis models (i.e., between ABBs and APMs).
CBAMs are also known as analysis modules and analysis templates.  Figure 1 depicts three
flap link CBAMs and their macro-level connections to the APM.  The right side of Figure 2 is
the flap link extensional model annotated with its key MRA and CBAM features.  It captures
explicit CAD-CAE associativity, i.e., how a subset of APM attributes like effective length, Leff,
are connected to the extensional rod ABB it is using.  Note that this same type of ABB can be
used in other CBAMs for other types of products (e.g., circuit board solder joint analysis [3]).  In
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addition to how the analysis is �wired� to work, the CBAM shows why the analysis exists: to
determine if the calculated stress exceeds the allowable stress.  It uses a margin of safety ABB
for this purpose as seen in the lower left corner of the constraint schematic.

Similar to the spring examples in [1], Figure 3 shows how a single CBAM can be run in several
directions.  In state 1, the APM details are inputs, and stress and margin of safety are outputs.  In
state 3 (the lower portion), the situation is reversed in that margin of safety is now an input and
APM cross-sectional area is an output.  This capability allows one to directly compute the
"optimum" design variable (e.g., cross-section area) in subgraph cases where systems of relations
analytically support directional changes.  The same CBAM can be used to check the design again
after its details have been developed.

Considering the engineering semantics of the problem, one sees that state 1 typifies a simple
design verification scenario, where the "natural inputs" (physical design properties and a load)
are indeed inputs and a "natural output" (a physical response to the load) is the requested output.
Hence, the design is being checked to ensure it gives the desired response.  As a design synthesis
(sizing) scenario, state 3 reverses the situation by making one natural output into an input and
one natural input into the desired output.  It effectively asks "what cross-sectional area (a design-
oriented variable) do I need to achieve the desired margin of safety (which depends on the stress
physical response)?"  This COB capability to change input and output directions with the same
object thus has important engineering utility.  It is a multi-directional capability in that there are
generally many possible input/output combinations for a given constraint graph.

Figure 1 also contains the flap link plane strain model, which simulates the same type of
physical behavior (extension) as the flap link extensional model.  It utilizes a finite element-
based SMM to obtain more detailed stress and deformation answers (over a 2D field versus the
1D field in flap link extensional model).  Its constraint schematic graphically shows that its ABB
connects with more APM geometric and material model idealizations than does the 1D case.
Thus, it is a higher fidelity CBAM and illustrates the multi-fidelity capabilities of the MRA.
Typically engineers use quick lower fidelity models early in the lifecycle to size the design, and
more costly higher fidelity models later to check the design more accurately.

Finally, the flap link torsional model in Figure 1 illustrates the multi-behavior capability of the
MRA.  This CBAM simulates a different type of physical behavior (torsion) versus the previous
two extension CBAMs.  Note that it uses the torsional rod ABB described before and connects to
different idealized attributes in the APM (e.g., polar moment of inertia) as well as to some of the
same ones (e.g., effective length).  The analysis tool Mathematica again solves the formula-
based relations as an example of CAE tool re-usage.

3 Discussion
The left side of Figure 2 is a traditional documentation-oriented view of the 1D extensional
analysis.  Shortcomings of this view are that it imposes a unidirectional sequence, it limits
modularity and reusability, and it typically does not contain idealization relations like effective
length.  COBs overcome some of these problems today.  In the future such documentation views
may be automatically derived from COBs using technologies like XML.
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In cases where relations can not be inverted, at a minimum COBs can be used to try various
inputs and attempt to achieve desired result (a kind of manual optimization).  Part 3 discusses
steps towards automated optimization [2].

4 Summary
This paper describes constrained objects (COBs) for a flap link analysis integration tutorial.  It
overviews concepts from the multi-representation architecture (MRA) that enable advanced
CAD-CAE interoperability.  Employing an object-oriented approach, the MRA defines natural
partitions of engineering concepts that occur between traditional design and analysis models.
The MRA is particularly aimed at capturing reusable analysis knowledge at the preliminary and
detailed design stages.  Other work [3] describes industrial applications including highly
automated analysis module catalogs for chip packages that have reduced simulation cycle time
by 75%.
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Figure Captions
(see figures in separate MS PowerPoint file)

Figure 1 - COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability: Flap
Link Tutorial

Figure 2 - Traditional Documentation vs. a COB-based CBAM: flap link extensional model

Figure 3 - Multi-Directional Capabilities of COB-based CBAMs
(Two Constraint Schematic Instance States of the flap link extensional model)
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Figure 1 - COB-based constraint schematic for multi-fidelity CAD-CAE interoperability
(flap link tutorial)
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Figure 2 - Traditional documentation vs. a COB-based CBAM
(flap link extensional model)
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Figure 3 - Multi-directional capabilities of COB-based CBAMs
(two constraint schematic instance states of the flap link extensional model)
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