
901

EEP-Vol. 19-1, Advances in Electronic Packaging -- 1997
Volume 1, ASME 1997

MODELS OF ELECTRONIC PACKAGE ENGINEERING

Fred L. Cox III
Georgia Tech Research Institute

Atlanta, Georgia

Gintautas B. Jazbutis
Structural Dynamics Research Corporation

Seattle, Washington

ABSTRACT
 Some CAD and CAE tools exist to support electronic package
engineering. However, these tools address only part of the needs of
the discipline. Many of these tools are merely adaptations of tools
developed for other areas, such as printed circuit board design, and do
not address the unique needs of single- and multi-chip modules nor
allow for the increased complexities of the advanced packaging
technology now being developed. Further cost reduction could be
realized by providing consistent, unified information and data
management throughout the design, fabrication, assembly, and testing
of packages.
 Formal models of the electronic package engineering process are
needed to guide the development of software and databases to achieve
these design automation goals. This paper reports on the development
of such models, written in IDEF0 and EXPRESS. These models
should be useful in determining the needs for CAD and CAE software
in the package engineering process and in establishing requirements
for software integration and interoperability.

OVERVIEW
 The models presented in this paper were developed under support
provided by the Georgia Tech Packaging Research Center (PRC). A
key objective of the Packaging Research Center is to create the
technology required for the development of low cost, high
performance electronic packages. The use of computer aided design
and design automation tools has proven critical to reducing cost in
related areas of engineering, such as the design of integrated circuits.
With the emphasis on high performance packaging comes an
increased complexity of the packages themselves, which in turn
increases the need for tools that automate or aid package engineering

activities. The new electronic packaging technology also has a need
for much greater integration of the tools supporting electrical,
mechanical, and thermal design.
 In recognition of these needs and opportunities, the Packaging
Research Center formed the Design Automation and Integration
Thrust Team to address these issues. It became clear that a formal
description of the electronic package engineering process, from
specification and design through testing, was needed to support
adequate definition of the requirements for design automation.
Consequently, the development of process and information models
was begun, with the initial effort being focused on the areas of design
and testing. The results of this effort are reported in this paper.
 The next section will describe some of the problems encountered in
design automation for electronic package engineering and their
consequences. The following section will discuss the needs for formal
models, how the models should be used, and the manner in which the
models were developed. The next two sections provide information
on how to interpret the models, including introductions to the formal
languages used to describe the models. Recommendations are then
given for further research and use of the models. Some representative
models are also provided to give the reader an idea of the development
and use of such models.

PROBLEMS IN DESIGN AUTOMATION FOR PACKAGING
 There are a number of problems related to software for supporting
electronic package engineering as well as in the engineering process
itself. These problems appear to be significant cost drivers that need
to be solved. Some of these problems are discussed in this section.
 As noted earlier, some software tools and tool packages exist for
computer aided design of electronic packaging. However, these tools

902

address only a subset of the needs of the area. Further, the typical
package engineering organization finds itself dependent on an
assortment of tools from various vendors, since some tools more
effectively meet the organization’s specific needs than others. It is not
unusual for the mix of tools to include software developed in-house to
provide functionality not supplied by commercially available tools.
While any given vendor’s toolset may be reasonably well integrated, it
is rare to find adequate integration for tools across multiple vendors.
There is also a low level of tool interoperability (the ability of tools to
share data), which results largely from the lack of common data
formats and the dependence of tools on vendors’ own proprietary data
formats.
 These problems in integration, interoperability, and unavailable
functionality place a significant burden on electronic package
engineers, forcing them to patch together multiple software tools and
manual processes. This complexity adds to the steep learning curve
typically associated with individual tools and results in greater
expense for training and retraining of personnel. Ideally, automation
and aiding tools should reduce the level of expertise required of
engineers, making it possible to staff the operation with less highly
qualified individuals. However, the current situation increases the
level of qualification required by adding the need for expertise in use
of the tools as well as in navigation of the patchwork of automated
and manual operations. The interoperability problem can also force
the reentry of data or the development of special data format
translators, which in turn often lead to data inconsistencies as well as
redundant storage of data.
 The problems generally are accompanied by poor management of
information and data, even in single-vendor tool frameworks.
Typically, there is little, if any, version control available. There is
rarely any support for tracking the relationships among data objects,
such as file derivation, design splitting, or the association of
simulation results with the particular version of a design giving rise to
them. This valuable function is left to be manually implemented by
the engineers, who often ignore it.
 Loss of information also occurs frequently. For example, much of
the information needed by test engineers will normally have been
generated during the design process but discarded. As a result, the
time and cost of test development is increased by the need for test
engineers to regenerate the lost information. Regeneration of the
information also lends itself to the creation of inconsistencies and
consequent testing problems. This situation also highlights a common
problem in package engineering, the lack of concurrency in design
and test development. Properly coordinating these two activities and
making them concurrent can reduce problems with testability, reduce
the delay between the ability to fabricate packages and the ability to
test them, and reduce the number of design iterations, thereby
shortening the time to market.

TECHNICAL APPROACH
 In defining requirements for software to support electronic package
engineering, it is important to determine what information is created in
the engineering process and the general information dependencies,
binding constraints, and flow. It is also important to determine the
functional coverage provided by existing software, to evaluate the
quality of that coverage, and to identify any inadequacies. Given a
cost profile of the overall engineering process, this knowledge can

provide a basis for projecting the potential economic benefit and
return on investment of providing various forms of automation,
aiding, and integration. Such an analysis, in turn, would support the
prioritization of software development efforts.
 A formal means of representation is needed for describing the
overall package engineering process and its information content, both
as it exists and as it might be preferred. IDEF0 and EXPRESS
provide such representational formalisms and have been used
productively to improve automation and integration in such domains
as mechanical engineering. IDEF0 supports the formal description of
the functional activities of a process, along with their
interrelationships, resource requirements, inputs, outputs, and control
factors. EXPRESS enables the formal representation of information
elements, their attributes, relationships, and associated constraints.
EXPRESS may be used to provide detailed representations of the
components of an IDEF0 model. Together, these formalisms provide
a powerful mechanism for portraying the engineering process in a
manner that supports communication, analysis, and common rules of
interpretation. In a sense, these tools are to process engineering what
schematics and component data sheets are to electronic circuit design.
 Models in IDEF0 and EXPRESS can provide a clear, objective
basis for mapping the functionality of existing software tools and
frameworks onto the engineering process to identify gaps in coverage
and specific problems with integration and interoperability. Models of
this kind can also help identify opportunities for improving the
engineering process, such as increasing the concurrency of constituent
activities, as well as aid in ascertaining inherent constraints on such
changes. Other potential benefits of these models include:

· help in determining optimal information creation, use, and
storage, so as to avoid information loss, redundancy, or
inconsistency;

· aid in evaluating the effects of alternative design
methodologies;

· ready identification of integration and interoperability
requirements and the need for standard data formats and
protocols;

· automatic generation of shared databases;
· support for training persons unfamiliar with the package

engineering process or aspects of it; and,
· facilitation of communication for persons and organizations

attempting to analyze and improve package engineering.
 In developing these models, a decision had to be made whether to
model a specific process, such as that of a particular organization, or
to develop models for a generic process. For the current project, a
generic approach was deemed more appropriate for PRC purposes and
more consistent with the level of funding and availability of experts
from organizations involved in electronic package engineering. (One
organization pointed out that it considered its engineering process to
be a key factor in the organization’s ability to compete and
consequently was unwilling to share this proprietary information.)
The generic models thus developed should provide a reasonable basis
for evaluating the functional coverage and integration of existing
software. They should also provide examples and starting points for
any organization wishing to develop models of its own engineering
process.
 Another decision regarded the use of one or many expert sources.
With either approach, it is helpful to start with a single expert, since

903

doing so reduces problems with convergence and leads to a concrete
draft early on to which others can respond. In an engineering
organization, the broad review of such a draft or strawman can
produce very valuable insights as well as highlight differences of view
and alternative preferences. Although surfacing these differences can
prove interesting, it is a critical step toward achieving a unified view
of the process, shared throughout the organization. This step is also
fundamental to improving the process, since little progress can be
made when communication and cooperation are undercut by
unsuspected, divergent views of the process as it exists. Also,
potential expert sources sometimes perceive a threat to the security of
their jobs when asked to participate in developing models to be used
in supporting automation. However, the attendant reluctance to
participate may often be overcome by the desirability of illuminating
problems in the process as it exists and offering ways to improve it.
 In this project Dr. Madhavan Swaminathan of the Packaging
Research Center was the primary subject matter expert, who gave
liberally of his time and knowledge. Information regarding design
parameters was provided by Dr. Timothy J. Drabik and Albert Titus.
Information on testing was provided by Bruce Kim and Sasidhar
Koppolu. We also drew information from written sources, such as the
Microelectronics Packaging Handbook [Tummala and Rymaszewski].
Any errors, inadequacies, or misinterpretations in the models should
be attributed to the authors and not to these sources. However, it is to
be expected that anyone familiar with electronic package engineering
will entertain divergent opinions regarding at least some aspects of the
models.

IDEF0 MODEL OVERVIEW
 The IDEF modeling methods are a product of the United States Air
Force's Integrated Computer Aided Manufacturing (ICAM) program
of the late 1970's and early 1980's. The primary goal of the program
was to increase productivity; the ICAM approach was to establish
structured methods and tools for applying computer technology to
manufacturing. The ICAM Definition (IDEF) family of methods was
defined to better understand, communicate, and analyze
manufacturing [Bravoco and Yadav].
 The ICAM program established a System Development
Methodology, the components of which are:

·· a management approach to integrated systems
development which entails four major steps:
understanding the problem, formulating the solution,
building the solution, and implementing the solution;

·· a standard mechanism for the development and
documentation of the technical analysis, comprised of
the IDEF0, IDEF1, and IDEF2 methodologies; and,

·· a common approach to developing and validating
system models.

 The IDEF methods are used to provide a structure around which
the tools and methodologies for integrated systems development can
be constructed.
 IDEF0 is a modeling method by which the activities and functional
aspects of a process may be represented. The models graphically
describe the flow of items among activities, the resources used in the
activities, and constraints on the activities. The method is top-down
and hierarchical, and models can be developed to a high degree of
detail. The first level (one-page drawing) of each model generally

contains one activity. This activity may be decomposed into greater
detail by creating a new level containing multiple activities. Each
activity in turn may be decomposed further, until the desired level of
detail is achieved. Figure 1 shows the hierarchical structure used in
IDEF0.

TOP LEVEL

M
o

re
 A

b
st

ra
c

t
M

o
re

 D
e

ta
ile

d

A3

A0

A1

A2

A11

A12

A13

A21

A22

A23

A131

A132

FIGURE 1. IDEF0 HIERARCHICAL STRUCTURE.

 An IDEF0 diagram consists of the following components (Figure
2):

·· Activities. Activities (system functions) are represented
by boxes and have a verb descriptive title.

·· Inputs. Inputs are represented by arrows entering the
left side of an activity. Inputs are items upon which the
activity works.

·· Outputs. Outputs are represented by arrows exiting the
right side of an activity. Outputs are items that are a
result of the activity.

·· Controls. Controls are represented by arrows entering
the top of an activity box. Controls are things that
influence the activity, such as specifications or
constraints.

·· Mechanisms. Mechanisms are represented by arrows
entering the bottom of an activity box. Mechanisms
are resources needed to perform the activity, such as
personnel or machinery.

·· Node Numbers. Node numbers designate the location
of activities in the hierarchy. A0 designates the top-
level activity; A0 decomposes to A1, A2, A3, and so
forth; A1 in turn decomposes to A11, A12, A13, and
such. The node number indicates the location of each
activity in the hierarchy.

904

Text and glossary. Each page of a diagram may have some descriptive
text, and a glossary may exist to define items and terms used in the
model.

PROCESS
DESCRIPTIVE

TITLE
NODE

NUMBER

OUTPUTS

CONTROLS

INPUTS

MECHANISMS

FIGURE 2. BASIC IDEF0 SYNTAX.

 Once an IDEF0 model has been implemented, the model
developers will have studied, understood, and characterized the
activities and functions of the overall process; they will also have
identified key events in the process. While most people in an
organization may have detailed knowledge of how their particular area
works, few know how all areas work. IDEF0 provides a method to
collect, characterize, and communicate this information. A well
developed IDEF0 model may also highlight subprocesses that need
improvement. In addition, a “To-Be” IDEF0 model may developed to
describe how the process should be; such a model would provide a
target for process improvement.

IDEF0 Model of Electronic Package Engineering
 Portions of the IDEF0 model developed for this project are found
in Figures 3 through 6. In addition to the models themselves, a
glossary of all the arrows was developed. A brief description of each
figure follows.

Figure 3: This figure provides the top-level diagram and represents the
overall activity of electronic package engineering: produce electronic
packages.

Figure 4: This figure shows the first level decomposition of the A0
activity into the five primary activities of developing packages:

·· development of product description and specification;
·· package design;
·· package fabrication and assembly;
·· interconnect and functional test;
·· package rework.

Figure 5: This diagram details the A2 activity. Initially, a set of rules
are developed (testing, thermal, mechanical, and electrical) which
constrain the physical design of the package. The package is then
designed, verified for adherence to the rules, and post-processed.

Figure 6: This figure breaks out the interconnect and functional test of
the assembled package. Each in turn decomposes into more detail. A
major feature of the functional test is the Built-In Self-Test (BIST)
capability of the package product.

INFORMATION MODEL OVERVIEW
 EXPRESS is a language and a method for information modeling
developed under the STEP (STandard for the Exchange of Product
data) program, an international effort to standardize product data
formats to improve interoperability. EXPRESS is a textual language;
however, it has a corresponding graphical representation, called
EXPRESS-G, which supports a subset of the semantics of EXPRESS
and can be generated from an EXPRESS model. EXPRESS-G can
also be used independently of EXPRESS [ISO TC184/SC4/WG5].
EXPRESS-G represents entities and their relationships to each other
and incorporates the inheritance feature of object-oriented design.
EXPRESS-G can also describe attributes of entities, but, unlike
EXPRESS, it does not represent operations on the attributes of
entities.
 An EXPRESS-G diagram consists of the following components
(Figure 7):

·· Entities. An entity represents anything that can be
considered a physical or logical object. Entities are
represented graphically by rectangles.

·· Relationships. Entities may be related to one another
in various ways. EXPRESS-G focuses on one-way
relationships: a circle designates the "to" end of a
relationship. Relationships may be of three kinds:

·· normal (depicted as a normal line),
·· tree (indicates inheritance of a supertype and

its subtype; depicted as a thick line), and
·· optional, which shows a weak or optional or

schema-to-schema relationship(depicted as a
dashed line).

·· Simple Type Symbols. Represented by rectangular
boxes with a double vertical line on the right side, these
are the predefined types available in EXPRESS.

·· Type Symbols. Represented by dashed-boxes, there are
three forms of types: SELECT, ENUMERATION, and
user-defined types.

·· Page References. An EXPRESS-G diagram may span
more than one page. Page references allow the modeler
to refer to entities on the same or other pages.

·· Inter-Schema References. Another schema (model)
may be referenced using components of this type.

 The reader is referred to the EXPRESS Language Reference Manual
for a full description of the EXPRESS lexical modeling syntax [ISO
TC184/SC4/WG5, Part 11] .
 EXPRESS supports the object-oriented approach in information
systems design and development. Entities may have a number of
attributes, and they may define operations valid on these attributes.
This approach allows incremental development and implementation of
information systems and supports code reuse. Other approaches that
have been proposed for object-oriented design include Yourdon’s,
Rumbaugh’s, and IDEF4.

905

A0

Create
Microelectronic

Package Products

Electronic Components

Raw Materials

Customer Info

Documentation

Scrap

Microelectronic
Package Products

Customer

Facilities
and
Equipment

Application
Tools

Personnel

Costs

Schedule

Manufacturing
Stds.

Design
Stds.

FIGURE 3. TOP LEVEL DIAGRAM.

Physical
Design

Develop
Product
Specs

Design
Package

Fabricate
and

Assemble
Package

Perform
Interconnect

and Functional
Tests

Rework
Package

A1

A2

A3

A4

A5

Design Stds. Manufacturing Stds.

Customer
Info

Raw Materials

Electronic Components

Mat’l Properties
& Chip Circuit
Characteristics

Die Details
& Netlist
Data

Expected Test
Results

Input
Test
Vectors
& Net
Capacitance

Documentation

Test Results

Reworked Package

Scrap

Microelectronic Package Products

Defective
Package

Substrate

Package
Product

Mask Mfg.
Language

FIGURE 4. DECOMPOSITION OF A0 ACTIVITY BOX.

906

Generate
Rules

Do Physical
Design

Do Post-Layout
Verification

Extract
Capacitances

Post Process
the Design

A21

A22

A23

A24

A25

Design and Manufacturing Stds.

Customer
Info

Expected Test Results

Documentation

Mask
Manufacturing
Language

Net Capacitance

Physical Design

Error in Design--Rule Violation

Final
Layout

Input Test Vectors

Rules:
 Testing
 Thermal
 Mechanical
 Electrical

Wiring Rules

Material Properties

Chip Circuit
Characteristics

Die Details &
Netlist Data

FIGURE 5. DECOMPOSITION OF A2 ACTIVITY BOX.

Perform
Thin-Film

MCM Substrate
Test

Perform
Functional

Test

A41

A42

Microelectronic Package Products

Test Results
Package
Substrate Thin-Film Substrate Test Results

Functional Test Results

Reworked Package

Package Product

Input Test Vectors

Expected Test
Results

Defective Package

FIGURE 6. DECOMPOSITION OF A4 ACTIVITY BOX.

907

SIMPLE TYPE SYMBOLS:

REALNUMBER INTEGER

LOGICAL STRING

BINARY GENERIC BOOLEAN

TYPE SYMBOLS:
TYPE NAME

ENTITIES: ENTITY NAME

page #, ref# (#, #, ...)

page#, ref# name

REFERENCE ONTO
THIS PAGE

REFERENCE ONTO
ANOTHER PAGE

RELATIONSHIPS:

TREE (SUPERTYPE & SUBTYPE)

OPTIONAL ATTRIBUTE OR
SCHEMA-TO-SCHEMA

NORMAL

CIRCLE END: "TO" END OF
RELATIONSHIP

INTER-SCHEMA REFERENCES:

SCHEMA.DEF

ALIAS

SCHEMA.DEF

ALIAS

DEFINITION REFERENCED
FROM ANOTHER SCHEMA

DEFINITION USED
FROM ANOTHER SCHEMA

ROLE NAME AND CARDINALITY (LIST, SET, BAG, ARRAY)

VALUES S[1:?]

FIGURE 7. BASIC EXPRESS-G SYNTAX.

EXPRESS Model of Electronic Package Engineering
 The initial entity of the EXPRESS model of electronic
package engineering and an EXPRESS-G representation of that
entity can be found in Figures 8 and 9, respectively. (The full
model is many pages long.)

SCHEMA ELECTRONIC_PACKAGE_ENGINEERING;
ENTITY Microelectronic_Package_Product;

ProductID: String;
Description: String;
PackageSubstrate: Package_Substrate;
Design: Physical_Design;
Materials: SET[1:?] OF Raw_Material;
Components: SET[1:?] OF Electronic_Component;
DesignedAccordingTo: SET OF Design_Standard;
Functional_Test: Functional_Test_Results;
Rework: Reworked_Package;
Documentation: Documentation;
Costs: Costs;

END_ENTITY;
…
END_SCHEMA;

FIGURE 8. EXPRESS MODEL OF MICROELECTRONIC
PACKAGE PRODUCT.

Costs

Microelectronic_Package_Product

StringProductID

StringDescription

PackageSubstrate

Design

Materials S[1:?]

Components S[1:?]

DesignedAccordingTo S[0:?]

Functional_Test

Rework

Documentation

Costs

13, 52, Package_Substrate

6, 44, Physical_Design

18, 54, Raw_Material

13, 55, Electronic_Component

26, 37, Design_Standard

1, 35, Functional_Test_Results

20, 56, Reworked_Package

13, 57, Documentation

FIGURE 9. EXPRESS-G REPRESENTATION OF
EXPRESS MODEL.

The EXPRESS model entities have many cross-references to
other entities on other pages; hence, the figures are labeled with
page numbers. Thus in Figure 9, there is one main entity,
Microelectronic Package Product, having a number of attributes
and other entities related to it. The Microelectronic Package
Product entity has a ProductID (which is simply a String), a
Package Substrate (another entity, found on another page of the
EXPRESS-G Model), a set of Raw Materials, and so on.
 The EXPRESS modeling performed in this project focused
on a relatively high level of abstraction. A fully detailed
information model for an electronic package was well beyond
the scope of this project. An EXPRESS model of an electrical

908

schematic alone would be rather large, including all the
symbology, components, component characteristics, locations
on the drawing, etc. The STEP program has developed an
Application Protocol (AP 210) for Printed Wiring Board design;
the complete documentation for that EXPRESS model alone
exceeds six hundred pages of definitions, text, and graphical
symbology.
 As mentioned before, the project team used software tools
from STEP Tools, Inc. to develop the EXPRESS and
EXPRESS-G models. STEP Tools, Inc. has also developed a
set of tools (STEP-Developer) to implement persistent entity
databases based on EXPRESS models. The model developed
for this project was implemented in ROSE, the database
management system provided through STEP-Developer. A
ROSE database consists of C++ classes (incorporating data
members and methods) which are manipulated by ROSE
Library functions. Hence, a C++ program can include
embedded ROSE code to access and manipulate data from the
database.

RECOMMENDATIONS
 To reap the potential benefits of the models reported here,
these models should be extended and applied. Although the
development of comprehensive models covering the breadth and
depth of the electrical package engineering process was beyond
the funding scope of the current project, such models should be
developed. Any package engineering organization desiring to
make use of this approach should also develop as-is models of
their existing engineering processes and use the resulting
models to critique their processes and evaluate alternative
approaches.
 The mapping of existing software tools and frameworks
onto the models should be performed. Since this mapping
would provide an immediate indication of limitations and
problems in the areas of functional coverage, integration, and
interoperability, organizations contemplating the licensing or
development of automation software would have an improved
basis for evaluating products and development plans. This
information should aid tool vendors as well as tool users. The
information should also be used to define specific integration
and interoperability requirements needing to be addressed by
tool developers along with detailed proposals for appropriate
data format and protocol standards.
 To date, the software tools for the engineering community
have mostly been aiding tools, addressed to narrow portions of
the problem and automating primarily well defined operations,
such as simulation. However, the research community has been
developing tools incorporating higher levels of capability, based
on technology such as logic programming, knowledge based
systems, and neural nets. Increasingly, these advanced tools are
of necessity becoming users of the lower level tools (e.g.,
simulators) many of which were originally designed with a
human user in mind and therefore biased, sometimes
exclusively, to human-oriented modes of input and output. This
development has led to the need for new methods and standards
for tool invocation and tool-to-tool access of functionality. The
lack of these methods and standards has already become a factor

retarding advancement of automation tools for the engineering
community. Research in these areas and resolution of these
problems should be promoted. (The needs discussed here are
not to be confused with those addressed by approaches such as
Object Linking and Embedding (OLE)).
 Even with an ideal software environment, nothing short of
total automation could shield the user from much of the
complexity inherent in the electronic package engineering
process. It can be argued that complete automation would not
be desirable even if it were attainable, that some mixture of
automation and aiding that would keep a human in the loop
would be preferable. Consequently, there may always be some
burden on the engineer to understand, operate and orchestrate
both the process activities and the tools. There will also be a
need to train new users and possibly retrain previous users of
the tools. Much of the operational burden and the need for
special training can be substantially reduced by providing an
intelligent software component to monitor the user’s activities,
answer high level questions, and provide guidance through the
electronic package engineering process. This capability is
within the reach of current software technology and could be
implemented before many of the other advances recommended.
The formal models advocated in this report would also provide
much of the process-related information required to implement
the capability. Therefore, we recommend the development of a
prototype with this capability as a proof of concept.

SUMMARY
 The goal of the project reported on in this document has been
to develop information and activity models of the electronic
package engineering process. The purpose of these models is to
support analysis and improvement of this engineering process,
especially through research and development in automation
software and software integration. While the current models are
of a generic nature, they provide examples and starting points
for organizations to develop models specific to their own
engineering processes. They also are immediately useful in
evaluating the coverage, integration, and interoperability of
existing automation software. Properly applied to process
improvement and the development of appropriate automation
tools, these models can lead to lowered cost and improved
quality and performance of electronic packaging. The full
models developed in the project can be found in [Cox and
Jazbutis].

REFERENCES
Bravoco, R. R. and Yadav, S. B., "Requirement Definition
Architecture --- An Overview," Computers in Industry, Vol. 6,
pp. 237-251, 1985.

Bravoco, R. R. and Yadav, S. B., "A Methodology to Model the
Functional Structure of an Organization," Computers in
Industry, Vol. 6, pp. 345-361, 1985.

Cox, F. L. and Jazbutis, G. B., Process and Data Modeling of
Electronic Package Engineering, Georgia Tech Research
Institute, Atlanta, Georgia, April 1996.

909

Schenck, D. A. and Wilson, P. R., Information Modeling: The
EXPRESS Way, Oxford University Press, New York, N.Y.,
1994.

Mayer, R. J., et al., "Information Integration for Concurrent
Engineering (IICE) IDEF3 Process Description Capture Method
Report,” Knowledge Based Systems, Inc., College Station, TX.

ISO CD 10303-210: Product Model Data Representation and
Exchange - Part 210; Application Protocol: Printed Circuit
Assembly Product Design Data N5-94; 1994.

ISO TC184/SC4/WG5 Part 11, EXPRESS Language Reference
Manual, 1991.

STEP Tools, Inc., STEP-Developer Reference Manual, 1993.

Tummala, Rao R., and Rymaszewski, Eugene J. [ed.]
Microelectronics Packaging Handbook, Van Nostrand Reinhold,
New York, N.Y., 1989.

Yeh, Chao Pin, “An Integrated Information Framework for
Multi-Disciplinary Printed Wiring Board Design,” Ph.D. Thesis,
Georgia Institute of Technology, Atlanta, GA, 1990.

