
1996 ASME Intl. Mech. Engr. Congress and Exposition
Application of CAE/CAD to Electronic Systems, EEP-18, 33-46

Atlanta, GA. November 1996

33
Tamburini et al.

ABSTRACT
The engineering data for products such as Printed Wiring
Assemblies (PWAs) is a complex aggregation of heterogeneous
information generated by a variety of design tools. At certain
stages of the product development cycle this information is used
to perform engineering analyses in order to validate the design
against several criteria.

This paper addresses the problem of populating product data
from several heterogeneous sources in order to support the
informational needs of given engineering analyses. This is usually
a tedious and error-prone process, which involves accessing the
data—often manually—from different repositories, stored in
different formats and in different locations. After the data is
retrieved, it must be integrated in a way that is meaningful to the
analysis models employed. This integration is unique in that
much of the data representing the design of the complete product
is not used at all in the analysis, while the data that is used has to
undergo significant transformation and/or idealization before
being fed into the analysis models.

This work proposes an object-oriented architecture to
automate the data retrieval and population process. It generates a
semantically meaningful set of data from which the analysis
applications can extract the information they need more easily.
The emerging Standard for the Exchange of Product Model Data
(STEP) provides the neutral mechanisms needed by this
architecture for describing and exchanging product data. The
design and analysis of Printed Wiring Assemblies was chosen to
test the concepts developed in this work. In this example, the goal
is to assemble PWA product data created by several E/MCAD
tools into a single integrated schema that supports the
informational needs of specific thermomechanical analyses.

NOMENCLATURE
Γ Product-Analysis Transformation
αC component’s coefficient of thermal expansion
∆Lc component’s length change
aat Analysis-Analysis Transformation

ABB Analysis Building Block
al Associativity Linkage
AOPD Analysis-Oriented Product Database
AOPM Analysis-Oriented Product Model
AP Application Protocol
CAD Computer-Aided Design
CAE Computer-Aided Engineering
DAI Design-Analysis Integration
E/CAD Electrical Computer-Aided Design
ISO International Standards Organization
LC component length
LCCC Leadless Ceramic Chip Carrier
MDL Mapping Definition Language
MRA Multi-Representation Architecture
pat Product-Analysis Transformation
PBAM Product Model-Based Analysis Model
PCA Printed Circuit Assembly
PWA Printed Wiring Assembly
PWB Printed Wiring Board
sm Semantic Mapping
STEP Standard for the Exchange of Product Data
TC component’s temperature
TO reference temperature

1 INTRODUCTION
In today's product design process, a significant gap typically
remains between detailed computer aided design (CAD) models
and computer aided engineering (CAE) models. While many
aspects of engineering analysis are computation-intensive, we
believe design-analysis integration (DAI) is primarily an
information-intensive problem that requires engineering
information management solutions. This section overviews our
DAI approach and identifies the focus of this paper. Section 2
describes the general characteristics of product data to support
analysis. Section 3 provides an overview the proposed Analysis-
Oriented Product Model Population Technique, as well as a
simple example case to illustrate it. Section 4 shows an example
of how this populated Analysis-Oriented Product Model is used

POPULATING PRODUCT DATA FOR ENGINEERING ANALYSIS WITH
APPLICATIONS TO PRINTED WIRING ASSEMBLIES

Diego R. Tamburini, Russell S. Peak, Robert E. Fulton
Engineering Information Systems Laboratory

School of Mechanical Engineering
Georgia Institute of Technology

Atlanta, GA

Tamburini et al.

34

by an analysis application. Section 5 discusses the advantages of
the technique and future work, and Section 6 summarizes the
paper.

This work is being conducted under the DARPA-sponsored
TIGER project (Team Integrated Electronic Response) (TIGER
Team 1995), in which Georgia Tech is participating jointly with
the Atlanta Electronic Commerce Resource Center, Boeing,
South Carolina Research Authority, International TechneGroup
Incorporated, Arthur D. Little and Holaday Circuits. The task of
the Engineering Information Lab at Georgia Tech for this project
is to provide thermomechanical analysis capabilities to analyze a
Printed-Wiring Assembly that was designed using several E/CAD
systems.

1.1. The Multi-Representation Architecture
Linking design and analysis models is fundamentally different
than typical data exchange tasks in that it requires heterogeneous
transformations - transforming one or more types of information
into a different type of information, typically in different formats
(Peak et al. 1996). The integration challenge is further
complicated in that a given type of product can have numerous
types of analysis models that varying in discipline, resolution,
application, and complexity (Peak 1993; Peak et al. 1995).

We believe this diversity makes the gap between design and
analysis models too large for a single integration bridge. Hence,
(Peak et al. 1995) developed the multi-representation
architecture (MRA) with intermediate representations as
stepping stones to achieve a flexible, modular integration of
commercial design and analysis tools (Figure 1). Solution
method models (SMMs) are object-oriented wrappers around
solution tools (e.g., FEA systems) that utilize an agent-based
framework to obtain analysis results in a highly automated
manner. Analysis building blocks (ABBs) are a representation of
engineering analysis concepts with high semantic content. ABBs
generate SMMs based on solution technique-specific
considerations such as symmetry and mesh density. Product
models (PMs) represent the design-oriented details and provide a
common stepping stone to design tools. Finally, product model-
based analysis models (PBAMs) are templates that explicitly

represent the heterogeneous associativity between analysis
models (i.e., ABBs) and design models (i.e., PMs).

PBAMs can be used to create catalogs of ready-to-use
analysis modules for applications such as solder joint deformation
and fatigue, PWB warpage, and plated-through hole deformation
(Peak 1993; Peak and Fulton 1993; Peak et al. 1996). (Cimtalay
et al. 1996) have demonstrated initial usage to achieve modular
optimization.

1.2. Focus of this paper
The work on the MRA architecture described above focused on
developing a mechanism to extract and transform data from an
integrated product database in order to perform some engineering
analyses. As described in (Peak et al. 1995), the PBAMs use the
idealizations supported by this product model to perform the
analyses. However, the assumption was made that this integrated
product database was already available, without going into further
details on how it was populated with the data generated by the
different analysis tools. This is precisely the focus of this paper:
to complement previous work on the MRA architecture by
proposing a mechanism to assemble data from several
heterogeneous sources in order to populate an Analysis-Oriented
Product Database that supports engineering analysis effectively.
We also elaborate more on how idealizations are described and
implemented in this product model.

2. CHARACTERISTICS OF PRODUCT DATA TO
SUPPORT ANALYSIS
The primary goal of engineering design is to obtain a complete,
unambiguous, manufacturable description of a given product.
During the development of this product, designers use a wide
variety of software systems that generate data describing different
aspects of the product. The result is a complex aggregation of
heterogeneous information that is very large and detailed. At
certain stages of the product development cycle this information
is used to perform engineering analyses in order to validate the

1 Solution Method Model

ΨABB SMM

2 Analysis Building Block

4 Product Model-Based Analysis Model3 Product Model

SMMABB

ΦPM ABB

PBAM

PM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3
body2

body1

body4

T0

Printed Wiring Board (PWB)

Solder
Joint

Component

Figure 1: The Multi-Representation Architecture for Design-Analysis Integration

Tamburini et al.

35

design against several criteria. Although there is a large number
of computer aided engineering tools available, the current status
is that typically two software tools are not compatible in such a
way that they can exchange data directly - without cumbersome
(manual or semi-automatic) transformation (Kemper and
Moerkotte 1994). In many cases, the data needed as input for the
analysis models is even retrieved manually and re-inputted in
some other computer application for analysis. Some raw design
information must undergo significant transformation and/or
idealization before being fed into the analysis models on which
the analysis applications are based (Armstrong 1994; Shephard et
al. 1990). This is usually a tedious, slow, and error-prone process
that illustrates the much dreaded “islands of automation”.

A more ideal scenario would be one in which there is a single,
analysis-oriented repository that contains all the information
needed for the analyses in a ready-to-use form, isolating the
analyst from the intricacies of specific file formats and data
structures (Urban et al. 1993), unfamiliar entity and attribute
names, and complex data transformations.

For this purpose, an integrated analysis-oriented data model
should provide mechanisms to support:

• Heterogeneous sources of data: Data needed for analysis
comes from different heterogeneous sources. Design-
analysis integration will only be achieved if we can
provide a view of the informational world that conceals
much of the locational and structural properties of the data
(Kemper and Moerkotte 1994). A good example
illustrating the different sources of data needed for
thermomechanical analysis of PWAs can be found in
(Zhou 1996). Another example is the analysis of PWB
bending during manufacturing; such an analysis would
need data about the PWB itself - created with an E/CAD
tool - as well as data about the manufacturing process
(process temperatures, forces, etc.) - created by a
process/factory definition tool.

• Reusable idealizations: The product model must support
idealizations that relate detailed, design-oriented attributes
with simplified, analysis-oriented attributes for usage by
potentially many analysis applications1 (Peak et al. 1995).
For example, a common analysis attribute used for
different thermal bending analysis models for PWBs is the
diagonal length of the board. This length is an idealization
that is obtained from the outline of the board, and its
computation may be quite complex (specially if the edges
of the board are not straight lines). Therefore, it would be
better to have the value of this attribute readily available
in the analysis-oriented product model, instead of
requiring each analysis application that uses this attribute
to calculate it.

• Data synthesis: Synthesis is the opposite of idealization;
during synthesis we assign values to product variables
based on the results of an analysis. This process is
complicated by the fact that the set of product data is

1 We may also think of idealizations as attributes of the product beyond

those needed to give a complete and unambiguous description to

manufacture this product.

richer than the one of analysis data, and therefore there
may be the need to add information in order to synthesize
data. Additionally, product-analysis transformations that
have a closed-form solution in one direction (for instance,
a relation of the form A1 = Γ(P1, P2), where A1 is an
analysis variable, and P1 and P2 are two product
variables), may not have one if, for example, we need to
solve for one of the product variables, say P1.

• Unavailable Analysis Data: Design data often must be
complemented with additional data in order to perform an
analysis. Some analysis may need very specific
information that is not being supplied by any of the design
tools or that is not readily available in any form. Examples
of this type of information are detailed electrical
component information (internal materials or dimensions),
temperature-dependent material properties, etc.

• Simplifications: Much of the data representing the design
of the complete product is not used at all in the analysis
(Morris et al. 1992). An example of this is geometry;
analyses rarely need all the detailed information used by
geometric modelers to represent the geometry of the
product. Analysis models normally use a simplified
version of the real geometry. In order to be efficient, the
analysis-oriented product model must contain only the
minimum amount of information needed by the analysis
models.

• Data complexity: Engineering analyses tend to be
“information-hungry”. However, they normally demand a
large number of types of data - complicatedly
interconnected - as opposed to a large number of instances
of each type of data.

3. THE ANALYSIS-ORIENTED PRODUCT MODEL
POPULATION TECHNIQUE

3.1. Overview of the Technique
As introduced above, the goal of the technique presented in this
paper is to populate an Analysis-Oriented Product Model
(AOPM) with data coming from different design sources in order
to support the information requirements of several analysis
models. We will refer to the populated AOPM as the Analysis-
Oriented Product Database (AOPD). The AOPM is a single,
integrated, abstracted view of the design-oriented product data
that is more appropriate for engineering analysis. By “more
appropriate” we mean:

• It contains entities whose names, attributes and structure
are more suitable for use by analysis models.

• It contains mostly data that would be used by typical
analysis models, which is a subset of all the data generated
by the design tools.

• More importantly, the AOPM supports idealizations of the
data. As described previously, idealizations are essential to
engineering analysis. Reusability is one advantage of
including idealizations in the AOPM, since many analysis
models may use the same common idealizations.

Tamburini et al.

36

A brief description of the proposed technique is presented
next, followed by a simple test case to explain it with more detail.
Figure 2 shows the overall data flow of the technique, as well as
the schemas that define the structure of the data in each step.
From left to right we have:
1. Design: The process begins when data about different aspects
of the product is generated by the design applications (D1 to DN).
Examples of design applications are geometric modelers, PWA
design tools and Database Management Systems. Each
application writes its data in a file (or set of files) using its own
data models and structures which, in general, can vary widely
from one application to another (e.g., hierarchical, relational and
object-oriented data models as shown). In addition, the data can
be stored in plain ASCII or binary database files.
2. Translation: An X-to-STEP2 translator (where X is the
proprietary data format of the application) translates the data in

2 STEP (ISO-10303) (ISO 10303-1 1994) was chosen as the neutral

representation of product data for our technique because it provides

neutral mechanisms for describing and exchanging product data, and

because there are several tools available (Spooner 1993; Spooner and

Hardwick 1993) to develop applications that create and manipulate

STEP databases. The standard also defines a textual conceptual

schema language, called EXPRESS (ISO 10303-11 1994; Schenck and

Wilson 1994), used to specify the normative part of all the information

each of these files to STEP. The vendors of the design
applications will ideally develop these translators in order to
make their tools standard-compliant. During this phase, we
homogenize the data models, that is, translate the data that
conforms to each tool’s data model into STEP, the common data
model (for example, a table in a relational database may be
translated to multiple instances of an EXPRESS entity). The
product of the translation is a STEP (Part 21) file3. Ideally, these
STEP files will conform to one of the STEP Application
Protocols4 such as AP210 or AP203, but they could conform to

models in STEP. EXPRESS is both human-readable and computer-

processable.
3 A STEP file (also known as Part 21 file, STEP Physical Exchange File

or STEP data file) (ISO 10303-21 1994) is a text file that contains

instances of entities corresponding to a given EXPRESS schema. The

STEP file is what actually gets exchanged among applications,

assuming that the applications are cognizant of the associated schema.
4 A STEP Application Protocol is a representation of product

information for one or more applications. For example, AP210

(“Printed Circuit Assembly Product Design Data”) (ISO DIS 10303-

210 1993) describes the structure of the data needed to product a

manufacturable description of a PCA, and AP203 (“Configuration

Controlled Design”) (ISO 10303-203 1994) specifies the structures for

the exchange between application systems of configuration controlled

Mapping
Tool

Analysis-
Oriented
Product

Database

Analysis
Application

A1

Analysis-
Oriented
Product Model

4

3

1 2

Mapping
Definition
Language

Analysis
Application

AM

Design
Application

D1

Translator
D1-to-STEP

STEP File D1Design File D1

Design
Application

D2

Translator
D2-to-STEP

STEP File D2Design File D2

Design
Application

DN

Translator
DN-to-STEP

STEP File DNDesign File DN

Design Translation

Mapping

Analysis

Schema D1

Schema D2

Schema DN

STEP Schema

STEP Schema

STEP Schema

Source
Files

Target
File

Figure 2: Overview of the Technique

Tamburini et al.

37

any other (non-standard) schema described in EXPRESS. Relying
on a standard schema allows integrating design applications from
several vendors, as long as they provide a mechanism to generate
a STEP-compliant file. From now on, we will refer to these STEP
files as the “source data files” (because, as we will see in the next
point, they will be the source files for the mappings).
3. Mapping: As described in the previous point, the translators
generate data files expresses in a common information modeling
language. However, the information these data files contain will
still be, in general, both structurally and semantically very
different from one to another. The goal of the mapping stage is to
homogenize the data structures and generate a single data file
(the AOPD or “target data file”) that conforms to an integrated
schema (the AOPM). In STEP terms, this could mean integrating
data that spans more than one Application Protocol. This process
is similar to the “semantic mapping” of the EXPRESS-Driven
Data Conversion methodology described in (Gadient and Hines
1994). In order to generate this AOPD, we define the mappings
between entities in the source data files and entities in the target
data file using a Mapping Definition Language (MDL). The
mappings are materialized by a mapping tool that reads the source
files and the MDL definition of the mappings and generates the
target file as its output. EXPRESS-V5 (Hardwick 1994; Spooner

three-dimensional product definition data of mechanical parts and

assemblies. It is expected that several hundred APs may be developed

to support the many industrial applications that STEP is expected to

serve.
5 Other existing MDLs are EXPRESS-M, EXPRESS-C, and KIF.

EXPRESS-M and EXPRESS-V are currently merging into EXPRESS-

X, which is in the early stages of the ISO standardization process. The

intention is to include this mapping language as one of the parts of the

STEP standard.

et al. 1995) was selected as the MDL for this work. EXPRESS-V
is an extension to EXPRESS that allows an information modeler
to write code that describes how one set of EXPRESSS entities
are mapped into another set of entities. The final product of this
stage is a single, integrated, Analysis-Oriented Product Database
(AOPD) containing the data needed for analysis purposes.
4. Analysis: Finally, the analysis applications read the data they
need from the AOPD. It is here where the work presented in this
paper is linked to the previous MRA work. PBAMS of the MRA
use the data and the idealizations supported in the AOPM to
perform the analyses.

3.2. Example Case
In this section we will illustrate the technique just described with
the simple example shown in Figure 3. We will show how the
data from the two STEP files is mapped into an integrated AOPD
(whose structure is defined by the AOPM) and how a few
idealizations are described and implemented. In the following
section we will show how this resulting AOPD is used by a
simple analysis application that we selected for this example.

In the same order in which we presented the technique we
have:
1. Design: For this example, we will assume that there are two
design applications: one used to define the electrical components
and their geometry (we will refer to this design application which
as the “E/CAD Tool”) and the other to populate a database of
material properties (the “Material Definition Tool”).
2. Translation: After the translation from the proprietary format
of the design applications to STEP is completed we have two
STEP files: components_data.step (Figure 4, defined by
the EXPRESS schema shown in Figure 5)6, which contains the

6 In a STEP file, each line in the DATA section (indicated by a # sign

followed by a sequential number, an equal sign, the name of the entity

AOPM.exp

materials.exp

components.exp

Material
Definition

components.step

materials.step

MDL

AOPD.step
Mapping

Tool

E/CAD
Analysis

Application

Design/Translation

1,2

Analysis

4

Mapping

3

Figure 3: AOPD Population Example Case

Tamburini et al.

38

design data generated by the E/CAD tool, and
materials_data.step (Figure 6, defined by the EXPRESS
schema shown in Figure 7), which contains the data generated by
the Materials Definition Tool.
3. Mapping: The goal is to populate the schema aopm.step
shown in Figure 8 with data stored in the files
components_data.step and materials_data.step
(Figures 4 and 6, respectively). In order to do this, we must define
the mappings that take place between the source data and the
target data. A graphical description of these mappings is shown in
Figure 9, along with their lexical description using EXPRESS-V
in Figure 10. The resulting integrated STEP file (aopd.step) is
given in Figure 11. For example, see how an instance of
SM_RESISTOR (instance #10 in components_
data.step , Figure 4) is combined with an instance of
LINEAR_MATERIAL that contains the material properties of
alumina (instance #10 in materials_data.step , Figure 6)
to generate an instance of RESISTOR (instance #40 in aopd.
step , Figure 11).

and a list of values) represents an instance of an entity defined in a

corresponding EXPRESS schema. For example, line #10 in Figure 4 is

an instance of SM_RESISTOR. The values of the attributes are given

in the same order they were defined in the EXPRESS schema. For

example, the first value of instance #10 (‘RES100’) is the

product_id of the SM_RESISTOR. If the value of an attribute is

itself an instance of another entity, the number of the latter will appear

in the place of the attribute. A $ sign represents a NULL value. For a

complete description of STEP files see (ISO 10303-21 1994).

SCHEMA components;

ENTITY component
 SUPERTYPE OF (ONEOF (SM_resistor , SM_LCCC));

product_id : id;
description : STRING;
body_length : distance_measure;
body_width : distance_measure;
body_height : distance_measure;
power_rating : power_measure;
lead_material : material_name;
base_material : material_name;
protective_film_material : material_name;

END_ENTITY;

ENTITY SM_resistor
 SUBTYPE OF (component);

resistance : resistance_measure;
resistive_element_material : material_name;

END_ENTITY;

ENTITY SM_LCCC
 SUBTYPE OF (component);

number_of_lead_sides : positive_integer;
leads_per_side : positive_integer;

END_ENTITY;

END_SCHEMA (* components *);

Figure 5: Schema components.exp for Source STEP file D1

ISO-10303-21;
HEADER;
/*--
 * Exchange File generated by ST-DEVELOPER v1.4
 * Conforms to ISO 10303-21
 */
FILE_DESCRIPTION ((''), '1');
FILE_NAME ('materials_data', '1996-07-01T12:13:37-04:00',
(''), (''), 'ST-DEVELOPER v1.4', '', '');
FILE_SCHEMA (('MATERIALS'));
ENDSEC;

DATA;
#10 = LINEAR_MATERIAL ('Alumina', $, 0.0000067, $, $, $

, $);
#20 = LINEAR_MATERIAL ('Ceramic', $, 0.0000003, $, $, $

, $);
ENDSEC;
END-ISO-10303-21;

Figure 6: Source STEP file D2 (materials_data.step)

ISO-10303-21;
HEADER;
/*--
 * Exchange File generated by ST-DEVELOPER v1.4
 * Conforms to ISO 10303-21
 */
FILE_DESCRIPTION ((''), '1');
FILE_NAME ('components_data', '1996-07-01T11:33:39-04:00',
(''), (''), 'ST-DEVELOPER v1.4', '', '');
FILE_SCHEMA (('COMPONENTS'));
ENDSEC;

DATA;
#10 = SM_RESISTOR ('RES100', '1206 Surface-Mount

Resistor', 0.125, 0.063, 0.02, 300., 'Sn-Pb',
'Alumina', 'Glass', 235., 'RuO2');

#20 = SM_LCCC ('LCC100', 'Leadless Ceramic Chip Carrier',
1., 0.7, 0.2, 350., 'Sn-Pb', 'Ceramic', 'Glass', 2,
20);

ENDSEC;
END-ISO-10303-21;

Figure 4: Source STEP file D1 (components_data.step)

SCHEMA materials;

ENTITY linear_material;
name : STRING;
young_modulus : REAL;
coef_thermal_expansion : REAL;
shear_modulus : REAL;
yield_stress : REAL;
ultimate_stress : REAL;
poissons_ratio : REAL;

END_ENTITY;

END_SCHEMA (* materials *);

Figure 7: Schema materials.exp for Source STEP file D2

39
Tamburini et al.

SCHEMA aopm;

(* Inter-Schema References *)
REFERENCE FROM analysis_models_schema;
REFERENCE FROM support_schema;

(* Entity Definitions *)
ENTITY electrical_component
 ABSTRACT SUPERTYPE OF(ONEOF (discrete_component ,
integrated_component));

part_number : id;
description : STRING;
package : electrical_package;
(* Idealized Attributes *)
primary_structural_material : solid_material;

END_ENTITY;

ENTITY discrete_component
 ABSTRACT SUPERTYPE OF(resistor)
 SUBTYPE OF(electrical_component);

magnitude : positive_real;
tolerance : positive_real;
power_rating : positive_real;

END_ENTITY;

ENTITY resistor
 SUBTYPE OF (discrete_component);

base_material : solid_material;
 WHERE

pat1 : primary_structural_material = base_material;
END_ENTITY;

ENTITY integrated_component
 ABSTRACT SUPERTYPE OF(ONEOF (integrated_circuit))
 SUBTYPE OF(electrical_component);

case_material : solid_material;
END_ENTITY;

ENTITY integrated_circuit
 SUBTYPE OF(integrated_component);
 WHERE

pat1 : primary_structural_material = case_material;
END_ENTITY;

ENTITY electrical_package
ABSTRACT SUPERTYPE OF(surface_mount_package);

(* Idealized Attributes *)
bounding_box_length : positive_length_measure;

bounding_box_width : positive_length_measure;
bounding_box_height : positive_length_measure;
inter_solder_joint_distance :

positive_length_measure;
END_ENTITY;

ENTITY surface_mount_package
 ABSTRACT SUPERTYPE OF(ONEOF (two_lead_component ,

chip_carrier))
 SUBTYPE OF(electrical_package);

body_length : positive_length_measure;
body_width : positive_length_measure;
body_height : positive_length_measure;

 WHERE
pat1 : bounding_box_length = body_length;
pat2 : bounding_box_width = body_width;
pat3 : bounding_box_height = body_height;

END_ENTITY;

ENTITY two_lead_component
 SUBTYPE OF(surface_mount_package);
 WHERE

pat1 : inter_solder_joint_distance =
SELF\body_length;
END_ENTITY;

ENTITY chip_carrier
 ABSTRACT SUPERTYPE OF(LCCC)
 SUBTYPE OF(surface_mount_package);
 WHERE

pat1 : inter_solder_joint_distance = SQRT(
SELF\body_length**2 + SELF\body_width**2);

END_ENTITY;

ENTITY LCCC
 SUBTYPE OF(chip_carrier);
END_ENTITY;

ENTITY solid_material;
name : STRING;
associated_linear_elastic_model :

linear_elastic_model;
associated_nonlinear_plastic_model :

nonlinear_plastic_model
;

associated_fatigue_model : fatigue_model;
END_ENTITY;

END_SCHEMA (* aopm *);

Figure 8: Analysis-Oriented Product Model Schema (idealized attributes shown in bold)

Tamburini et al.

40

product_id

description

body_length

body_width

body_heigth

resistance

pow er_rating

lead_m ateria l
base_m ateria l

protective_film _m ateria l

resistive_elem ent_m ateria l

SM _resistor

nam e

youngs_m odulus

coef_therm al_exp
shear_m odulus

yie ld_stress
ultim ate_stress
poissons_ratio

linear_m ateria l

package

associated_linear_
elastic_m odel

part_num ber

description

prim ary_structural_m ateria l

base_m ateria l

m agnitude

tolerance

pow er_rating

associated_nonlinear_
plastic_m odel

associated_fatigue
_m odel

nam e

cte

resistor

solid_m ateria l
linear_elastic_

m odel

body_length

body_width

body_heigth

bounding_box_length
bounding_box_wid th
bounding_box_heigth

inter_solder_jo int_distance

two_lead_
com ponent

S ource Schem as Target Schem a

Figure 9: Graphical description of the mappings (partial EXPRESS-G diagrams and
mappings for resistor only shown; hierarchies were flatten for simplicity)

SCHEMA mapping_schema;

USE FROM components;
USE FROM materials;
USE FROM aopm;

VIEW resistor
FROM(SM_resistor , linear_material)
WHEN (SM_resistor.base_material = linear_material.name);
VIEW_ASSIGN

part_number := SM_resistor\SM_component.product_id;
description := SM_resistor\SM_component.description;

NEW two_lead_component;
two_lead_component\surface_mount_package.body_length :=

SM_resistor\SM_component.body_length;
two_lead_component\surface_mount_package.body_width :=

SM_resistor\SM_component.body_width;
two_lead_component\surface_mount_package.body_height :=

SM_resistor\SM_component.body_height;

package := two_lead_component;

magnitude := SM_resistor.resistance;
power_rating := SM_resitor.power_rating;

NEW linear_elastic_model;
linear_elastic_model.coeff_thermal_expansion :=

linear_material.coeff_thermal_expansion;

NEW solid_material;
solid_material.associated_linear_elastic_model :=

linear_elastic_model;

base_material := solid_material;

END_VIEW;
END_SCHEMA;

Figure 10: EXPRESS-V of the mappings
(only mapping for resistor shown)

ISO-10303-21;
HEADER;
/*--
 * Exchange File generated by ST-DEVELOPER v1.4
 * Conforms to ISO 10303-21
 */
FILE_DESCRIPTION ((''), '1');
FILE_NAME ('aopd', '1996-07-06T10:15:46-04:00', (''),
(''), 'ST-DEVELOPER v1.4', '', '');
FILE_SCHEMA (('AOPM',
 'ANALYSIS_MODELS_SCHEMA'));
ENDSEC;

DATA;
#10 = TWO_LEAD_COMPONENT (0., 0., 0., 0., 0.125, 0.063,

0.02);
#20 = LINEAR_ELASTIC_MODEL (0., 0., 6.7E-06, 0.);
#30 = SOLID_MATERIAL ('Alumina', #20, $, $);
#40 = RESISTOR ('RES100', '1206 Surface-Mount Resistor',

#10, $, 235., 0., 300., #30);
#50 = LCCC (0., 0., 0., 0., 1., 0.7, 0.2);
#60 = LINEAR_ELASTIC_MODEL (0., 0., 3.E-07, 0.);
#70 = SOLID_MATERIAL ('Ceramic', #60, $, $);
#80 = INTEGRATED_CIRCUIT ('LCC100', 'Leadless Ceramic Chip

Carrier', #50, $, #70);
ENDSEC;
END-ISO-10303-21;

Figure 11: Resulting Analysis-Oriented Product Data File
(aopd.step) (null values of idealized attributes shown in bold)

Tamburini et al.

41

4. Analysis: Section 4 describes one analysis application that can
use the data stored in the AOPD and the idealizations supported
by the AOPM: a simple, formula-based PBAM that calculates the
elongation of a component due to temperature changes.

3.3. Supported Idealizations
We will now focus our attention on the idealizations supported by
the AOPM (shown in bold in Figure 8):

• electrical_component.primary_structural
_material : An electrical component such as a surface
mount resistor can have several layers of different materials
(Figure 12). For analysis purposes, we may want to select
one of them as the primary structural material and assume
that it is the only material composing the component. For
resistors, we will consider the base material to be the
primary structural material, and for chip carriers, the case
material.

• electrical_package.inter_solder_joint_
distance : This is a geometric idealization commonly
used by solder-joint fatigue models (Engelmaier 1983;
Engelmaier 1989). As shown in Figure 13, for a multi-
terminal component such an LCCC (Leadless Ceramic
Chip Carrier) it is the diagonal distance viewed from the
top, while for a two-terminal component such as a surface-
mount resistor, it is just its total length. Here the advantage
of using an object-oriented approach becomes more evident
since we can take advantage of polymorphism to redefine
such attributes depending on the type of object, as done for
the attribute inter_solder_joint_distance in the
entities two_lead_component and chip_
carrier in Figure 8 (WHERE rules ‘pat1 ’ of each
entity).

• electrical_package.bounding_box_length/
height/width : Certain analyses need the dimensions of
an imaginary rectangular geometry that encloses the
component rather than its detailed geometry. Since the two
components in this example are already rectangular, the
values of these idealized attributes are directly the total
dimensions of the components. However, if there was, for
example, a cylindrical component, its radius could be
idealized as the height and width of the bounding box.

The values of the idealized attributes for this test case are
obtained by simple assignments of values of design attributes
(e.g., primary_structural_material = base_
material) or by simple calculations (e.g., inter_solder_
joint_distance = SQRT(body_length 2 + body_
width 2)). In other cases, however, the computation of a value
for an idealized attribute may not be as straightforward (recall the
example of the diagonal length of the PWB mentioned in the
previous section). Considering this, and the fact that these values
are needed only when an analysis model asks for them, we choose
not to calculate them during the mapping phase in order to avoid
wasting resources in unnecessary complex calculations. Notice
that in the EXPRESS-V definition of the mapping (Figure 11)
these attributes do not get mapped. Also notice that in the AOPD
(Figure 11), the values for the idealized attributes are either
NULL (indicated by a dollar sign in EXPRESS) or initially set to
zero.

3.4. Implementation of the Idealizations
The relations (also known as product-analysis transfor-
mations) needed to obtain the values of the idealized attributes
described above are defined in the AOPM as WHERE rules (see
Figure 8). For example, in order to calculate the value of the
idealized attribute inter_solder_joint_distance for a
chip carrier, there is a WHERE rule in the chip_carrier
entity (rule “pat1 ”) that defines this distance to be equal to the
square root of the sum of the squares of the length and the width.

The EXPRESS definitions of entities of the AOPM and the
idealizations they support are implemented in a programming
language (C++ was used for this work) so that they can be used
by the PBAMs. Each entity in the AOPM is implemented as a
class, and the attributes of this entity as class variables of this
class. The protocol of this class consists of member functions to
access and update the values of the attributes of the entity as well
as member functions that implement the WHERE rules and allow
us to get the values of the idealized attributes.

At this point, the objective of the technique has been reached;
in one hand we have the integrated AOPD file (generated with the
mapping), and on the other hand we have a library of C++ classes
that provide an interface to the AOPD and that augment it by
providing means to obtain the values of idealized attributes on
demand. In the next section, we provide an example of how this
populated AOPM is actually used for analysis.

Multi-Terminal Component Two-Terminal Component

Lc

Lc

Ex. SMD 1206 resistorEx. LCCC-52 microprocessor

Figure 13: Inter-Solder Joint Distance for Multi-Terminal
and Two-Terminal components.

base

resistive
element

land
termination

electrode barrier

protective film

solderable
coating

primary structural material

Figure 12: Layers of Materials in a
Surface Mount Resistor

Tamburini et al.

42

4. AOPM USAGE EXAMPLE
The following is an example showing how the entities
resistor and LCCC defined in the AOPM are used by a simple
analysis application. This analysis application uses some their
attributes (mapped and idealized) to calculate the elongation of
these components due to a change in temperature (Figure 14).
The component is modeled as a one-dimensional rod having a
length LC, a coefficient of thermal expansion αC and subjected to
a temperature TC. The change in length ∆Lc is caused by the
difference between the reference temperature (TO) and the
temperature of the component (TC).

This analysis model is represented primarily using two
entities: a PBAM called component_extensional_
model and an ABB called elementary_rod . When
represented using EXPRESS (Figure 15), the ABB becomes an
entity, its analysis variables the attributes of this entity, and the
decomposed formulas (or analysis-analysis transformations)
WHERE rules (e.g., aat1 and aat2 of entity elementary_rod
in Figure 15).

ENTITY elementary_deformable_body
 ABSTRACT SUPERTYPE OF (elementary_rod)
 SUBTYPE OF(analysis_primitive);

associated_temperature : temperature;
temperature_change : temperature;
reference_temperature : temperature;
material_model : stress_strain_model;

 WHERE
aat1 : temperature_change = associated_temperature -

reference_temperature;
END_ENTITY;

ENTITY elementary_rod
 SUBTYPE OF (elementary_deformable_body);

(* Analysis Variables *)
associated_area : area;
undeformed_length : positive_length_measure;
total_elongation : length_measure;
associated_strain : strain;
associated_force : force;
(* Semantically Mapped Variables *)
youngs_modulus : REAL;
cte : REAL;
(* Subsystems *)
material_model :

linear_elastic_model;(*redeclaration*)
 WHERE

(* Analysis-Analysis Transformations *)

aat1 : total_elongation =
associated_strain*undeformed_length;

aat2 : associated_strain =
associated_force/(youngs_modulus *
associated_area) + cte*temperature_change;

(* Semantic Mappings *)
sm1 : youngs_modulus = material_model.youngs_modulus;
sm2 : cte = material_model.cte;
(* Subsystem Conditions *)
(* none extra *)

END_ENTITY;

(* Entity Defs:Product Model-Based Analysis Models *)

ENTITY component_extensional_model
 SUBTYPE OF (product_model_based_analysis_model);

(* Product Variables *)
component : electrical_component;
(* Analysis Variables *)
(* none extra *)
(* Semantically Mapped Variables *)
undeformed_length : positive_length_measure;
associated_cte : cte;
reference_temperature : temperature;
associated_temperature : temperature;
temperature_change : temperature;
total_elongation : length_measure;
associated_strain : strain;
(* Subsystems *)
deformation_model : elementary_rod;

WHERE
(* Associativity Linkages *)
al1 : deformation_model.undeformed_length =

SELF\ component.package.bounding_box_length ;
al2 : deformation_model.cte =

SELF\ component.primary_structural_material .assoc
iated_linear_elastic_model.cte;

(* Analysis-Analysis Transformations *)
(* none extra *)
(* Semantic Mappings *)
sm1 : undeformed_length =

deformation_model.undeformed_length;
sm2 : associated_cte = deformation_model.cte;
sm3 : reference_temperature =

deformation_model.reference_temperature;
sm4 : associated_temperature =

deformation_model.associated_temperature;
sm5 : temperature_change =

deformation_model.temperature_change;
sm6 : total_elongation =

deformation_model.total_elongation;
sm7 : associated_strain =

deformation_model.associated_strain;
(* Subsystem Conditions *)
(* none extra *)

END_ENTITY;

Figure 15: elementary_rod and component_extensional_model
EXPRESS descriptions (idealized attributes in bold)

The constraint schematic in Figure 16 shows how the PBAM
wraps the ABB and defines the linkages between the attributes of
a design object (component) and the attributes of the ABB (for
a complete description of the constraint schematics notation see
(Peak 1993), or refer to Figure 17 for the basic notation). This
PBAM also provides the interface needed to input analysis
variables (e.g., reference temperature) and get analysis results
(e.g., total elongation).

y

xT0

Lc

, cTα c

L∆ c

Fcomponent model (rod)

∆L T T Lc c c o c= −α ()

Figure 14: Analysis Model for the Test Case

Tamburini et al.

43

Two important types of linkages are shown in this constraint
schematics: Semantic Mappings (sm1-7), which link attributes of
the PBAM with attributes of the embedded ABB, and
Associativity Linkages (al1-2), which link attributes of the
product with attributes of the ABB. Associativity Linkages will
usually occur between idealized attributes of the product model
and attributes of the ABB (as it happens in the figure in the “al1”
and “al2” linkages). This is precisely where the analysis
applications “use” the idealizations supported by the AOPM.
Semantic Mappings and Associativity Linkages are described as
WHERE rules in the EXPRESS description of the PBAM
component_
extensional_model (Figure 15).

As also shown in Figure 15 (in bold), this particular PBAM
uses the idealizations electrical_package.bounding_
box_length (in the WHERE rule “al1”) and electrical_
component.primary_structural_material (in the
WHERE rule “al2”). Notice that the AOPM supports more
idealizations than those needed by this analysis application. The
more complicated PBAMs referenced in the introduction utilize
similar idealizations to drive both formula- and finite element-
based analyses.

Figure 18 is an “instance view” (Peak et al. 1995) of the

PBAM, depicting the usage of an instance of the
component_extensional_model class, with specific
inputs and resulting intermediate values and outputs. This PBAM
has been implemented as a C++ class whose protocol provides
member functions to input the component, the reference
temperature, the associated temperature (analysis inputs) and to
obtain the temperature change, the total elongation and the
associated strain (analysis results). When an instance of the
PBAM is created, an instance of elementary_rod is also
created and assigned as the value of the attribute
deformation_model of the PBAM. Upon creation, the
attributes of elementary_rod are initialized and the analysis
results sent back to the PBAM according to the rules defined in
the semantic mappings and the associativity linkages. Therefore,
“using” a PBAM means sending messages to an instance of the
PBAM class in order to set analysis variables and get analysis
results. For example, as shown in Figure 18, we can input an
instance of component (RES100), the reference temperature
(20oC), the associated temperature (120oC) and get the
temperature change (100oC), the total elongation (0.00213 mm)
and the associated strain (6.7E-4). Intermediate values shown are
“Alumina” as the primary structural material of the component,
6.7E-6 (mm/mm)/oC as its coefficient of thermal expansion, and

variable subvariable subsystem

equality relation

relation

relation

s
a b

dc

a

b

d

c
e

a.da s

r
r(a,b,s.c)

e = b - c

e = f

subvariable s.b

−− [1.2]

[1.1]
option 1.1

f
f = s.d

option 1.2
f = g

option category 1

g

 Figure 17: Constraint Schematics Notation

temperature change

total elongation

associated strain

component

primary
structural material

bounding box length

deformation model

linear elastic
model cte

associated temperature

reference temperature

associated cte

undeformed length

undeformed length Lo

cte, α

Elementary Rod

reference temperature To

associated temperature, T

temperature change, ∆T

total elongation, ∆L

associated strain, ε

sm1

sm2

al1

al2

sm3

sm4

sm5

sm6

sm7

package

Idealizations

Figure 16: Component Extensional Model Constraint Schematic

Tamburini et al.

44

3.175 mm as the length of the bounding box of the component’s
package.

5. DISCUSSION

5.1. Need for intermediate representations
The technique presented introduces several intermediate
representations and transformations of product data intended to
bridge the gap between design and analysis. The main drive of
this technique is to provide maximum flexibility and minimize the
number of customized translators needed. For this purpose, we
have stressed modularity and adopted a neutral product
representation such as STEP.

The reason for these intermediate representations and
transformations may not be obvious at first, but a closer look will
reveal the advantages of implementing this kind of modular
technique. Perhaps the best way to understand the importance of
each intermediate representation is by examining what would the
consequences be of eliminating it. Let us begin by eliminating
both the intermediate STEP and AOPM representations (Figure
2). Analysis applications would have to read their data directly
from design files D1 to DN. These files have, in general, data
structures and file formats that differ widely. Therefore, we would
need vendor-to-vendor translators to convert the data in the
design files into a format that can be understood by the analysis
applications. If we replaced any application with another from a
different vendor, we would need a different translator for each
application with which it exchanges data. Additionally,
idealizations and simplifications would have to be performed
within the code of each analysis application, making it more
difficult to reuse those idealizations and simplifications that are

common to more than one analysis.
Suppose now that we only eliminate the AOPM. Analysis

applications would now have to read their data directly from
STEP files D1 to DN. By introducing the intermediate STEP
representation we are eliminating the need of specific vendor-to-
vendor translators (as long as the design applications have
translators to a common STEP representation). However, these
STEP files will conform, in general, to STEP Application
Protocols, which could define the structure of the data in a way
that may not be the most convenient for the analysis applications
at hand. This could make the analysis code unnecessarily
complicated and difficult to maintain, and idealizations and
simplifications would still have to be performed within the code
of each analysis application. If there was a change in any of the
STEP schemas (or a new schema was added to the picture), all
the analysis applications would have to be modified to
accommodate this change.

Finally, let us consider the case when we eliminate the
intermediate STEP representation. In this case the mapping tool
would have to map the data directly from the design files D1 to
DN in order to populate the AOPM. This mapping is complicated
by the fact that the design files have different data structures and
formats. Although now the analysis applications are isolated from
changes in the design applications, the mapping is not. The
mapping code will have to be modified if there is any change in
the design applications or in the formats of their files.

5.2. Advantages of the technique
In addition to the advantages presented throughout the paper and
to solving the problems presented in the previous subsection, this
technique has the following advantages:

• If the idealizations needed by a given analysis application

temperature change

total elongation

associated strain

component

primary
structural material

bounding box length

deformation model

linear elastic
model cte

associated temperature

reference temperature

associated cte

undeformed length

undeformed length Lo

cte, α

Elementary Rod

reference temperature To

associated temperature, T

temperature change, ∆T

total elongation, ∆L

associated strain, ε

sm1

sm2

al1

al2

sm3

sm4

sm5

sm6

sm7

package

component extensional model

RES100

20 oC

120 oC

100 oC

0.00213 mm

6.7E-4

.3175 mm

Alumina 6.7E-6 (mm/mm)/oC

Figure 18: PBAM Schematic Instance View

Tamburini et al.

45

are already supported by the AOPM, we may not have to
add anything new to the AOPM in order to integrate this
analysis application with the others. As more analysis
applications are integrated, more reusable idealizations will
be identified and incorporated to the AOPM.

• The technique provides a means to describe product
information not supported by any existing Application
Protocol. Since an Application Protocol is, in essence, an
EXPRESS schema, we are can always create a new (non-
standard) schema for the non-supported data (as long as we
have a way to populate it with data) and integrate it with
the rest of the schemas.

• Once the analysts have agreed with the common AOPM
that will support their information needs, the analysis
applications and the mapping tool may be developed
simultaneously.

5.3. Future direction
The following are areas related to this work that we consider need
future attention:

• Use actual STEP Application Protocols such as AP210 (for
the definition of the PWA and its components) and AP203
(for the description of their geometry) as the schemas for
the source data (for this work, we created two small
EXPRESS schemas for the source data:
components.exp and materials.exp). This would
test the technique under more realistic conditions.

• Provide support for synthesis as well as for idealizations.
• Provide a mechanism to add missing data (data that is not

populated by any design tool) that is needed for analysis.
This is specially important when the missing data is
precisely a key attribute to perform the mapping.

• Experiment with more complicated idealizations (such as
total board thickness, diagonal board length, PWB warpage
properties, etc.).

6. SUMMARY
In this paper we proposed an approach to assemble product data
from several heterogeneous sources in order to support
engineering analysis. We called this approach the Analysis-
Oriented Product Model Population Technique. This technique
consisted of mapping the data generated by the different design
tools to populate an analysis-oriented view called the Analysis-
Oriented Product Model (AOPM). The populated AOPM was
called Analysis-Oriented Product Database (AOPD). The
mapping rules were described using the EXPRESS-V mapping
language. The AOPM provides support for the information needs
of the analysis applications, including support for engineering
idealizations. A simple example case was used to illustrate the
technique. In this example, we generated an integrated AOPD of
electrical components and material properties from separate
design files. We also showed how some simple idealizations were
supported and implemented. Finally, we provided an example of
how entities and idealizations defined in the AOPM were used by
a simple analysis application that calculates the elongation of the
electrical components due to changes in temperature. By

integrating this technique with the MRA architecture developed
in previous research here at Georgia Tech, we provide a
methodology to bridge the gap between design and analysis.

7. REFERENCES
Armstrong, C. G. (1994). Modelling Requirements for Finite-

Element Analysis. Computer-Aided Design. 26: 573-578.
Cimtalay, S., R. S. Peak, et al. (1996). “Optimization of Solder

Joint Fatigue Life Using Product Model-Based Analysis
Models.” ASME Winter Annual Meeting to appear.

Engelmaier, W. (1983). “Fatigue Life of Leadless Chip Carrier
Solder Joints During Power Cycling.” IEEE Transactions on
Components, Hybrids, and Manufacturing Technology 3(6):
232-237.

Engelmaier, W. (1989). Thermal-Mechanical Effects. Electronics
Material Handbook. M. L. Minges. Materials Park, OH, ASM
International. Volume 1 - Packaging: 740-753.

Gadient, A. J. and L. E. Hines (1994). EXPRESS Driven Data
Conversion. North Charleston, SC, South Carolina Research
Authority.

Hardwick, M. (1994). Towards Integrated Product Databases
Using Views. Troy, NY, Design and Manufacturing Institute,
Rensselaer Polytechnic Institute (Report No. 94003).

ISO 10303-1 (1994). Industrial Automation Systems and
Integration - Product Data Representation and Exchange -
Part 1: Overview and Fundamental Principles. Geneva,
Switzerland, International Organization for Standardization.

ISO 10303-11 (1994). Industrial Automation Systems and
Integration - Product Data Representation and Exchange -
Part 11: Description Methods: The EXPRESS Language
Reference Manual, International Organization for
Standardization.

ISO 10303-21 (1994). Industrial Automation Systems and
Integration - Product Data Representation and Exchange -
Part 21: Implementation methods: Clear text encoding of the
exchange structure, International Organization for
Standardization.

ISO 10303-203 (1994). Industrial Automation Systems and
Integration - Product Data Representation and Exchange -
Part 203, Application Protocol: Configuration Controlled
Design. Geneva, Switzerland, International Organization for
Standardization.

ISO DIS 10303-210 (1993). Industrial Automation Systems and
Integration - Product Data Representation and Exchange -
Part 210, Application Protocol: Printed Circuit Assembly
Product Design Data. Geneva, Switzerland, International
Organization for Standardization.

Kemper, A. H. and G. Moerkotte (1994). Object-oriented
Database Management : Applications in Engineering and
Computer Science. Englewood Cliffs, NJ, Prentice Hall.

Morris, K. C., M. J. Mitchell, et al. (1992). Database
Management Systems in Engineering. Gaithersburg, MD,
National Institute of Standards and Technology (Report No.
NISTIR 4987).

Peak, R., S. (1993). Product-Based Analytical Models (PBAMs):
A New Representation of Engineering Analysis Models

Tamburini et al.

46

(Doctoral Thesis). School of Mechanical Engineering.
Atlanta, Georgia Institute of Technology.

Peak, R. S. and R. E. Fulton (1993). “Automating Routine
Analysis in Electronic Packaging Using Product Model-Based
Analytical Models (PBAMs), Part II: Solder Joint Fatigue
Case Studies.” ASME Winter Annual Meeting 93-WA/EEP-
24.

Peak, R. S., R. E. Fulton, et al. (1995). “Integrating Engineering
Design and Analysis Using a Multi-Representation
Approach.” Engineering with Computers to appear.

Peak, R. S., A. Scholand, et al. (1996). “On the Routinization of
Analysis for Physical Design.” 1996 ASME International
Mechanical Engineering Congress and Exposition to appear.

Schenck, D. and P. Wilson (1994). Information Modeling the
EXPRESS Way. New York, NY, Oxford University Press.

Shephard, M. S., E. V. Korngold, et al. (1990). Design Systems
Supporting Engineering Idealizations. Geometric Modeling
for Product Engineering. M. J. Wozny, J. U. Turner and K.
Preiss. North-Holland, Elsevier Science Publishers: 279-299.

Spooner, D. (1993). Creating a Product Database with ROSE.
Troy, NY, Design and Manufacturing Institute, Rensselaer
Polytechnic Institute (Report No. 93054).

Spooner, D. and M. Hardwick (1993). Using Persistent Object
Technology to Support Concurrent Engineering Systems.
Concurrent Engineering: Methodology and Applications. P.
Gu and A. Kusiak. New York, Elsevier Science: 205-234.

Spooner, D., M. Hardwick, et al. (1995). The EXPRESS-V
Language Manual (http://www.rdrc.rpi.edu). Troy, NY,
Laboratory for Industrial Information Infrastructure,
Rensselaer Polytechnic Institute.

TIGER Team (1995). Technical Development Plan for the
TIGER Program. South Carolina Research Authority, N.
Charleston, SC., prepared for the Department of Defense
Advanced Research Projects Agency (Document Number:
TR002.01.00).

Urban, S. D., J. J. Shah, et al. (1993). Engineering Data
Management: Achieving Integration Through Database
Technology. Computing & Control Engineering Journal: 119-
126.

Zhou, W. X. (1996). Modularized & Parametric Modeling
Methodology for Concurrent Mechanical Design of
Electronic Packaging (Doctoral Thesis). School of
Mechanical Engineering. Atlanta, Georgia Institute of
Technology: 180.

