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1 Introduction

This document responds to the subject RFI primarily by overviewing a potentially relevant engineering knowledge representation known as constrained objects (COBs). 

Part 1 is being submitted now as an input for the June 2002 OMG Technical Committee meeting in Orlando.  Part 2 entitled “Potential Applications of Constrained Object (COBs) to the UML for Systems Engineering Effort” will address the specific questions in the RFI.  It is anticipated that Part 2 will be submitted as an input for the 
September 2002 meeting.  In brief, COB concepts like constraint schematics may help form the basis for UML extensions that will be useful for systems engineering.

2 Constrained Object Overview

2.1 Description

Constrained objects (COBs) have been developed over the past 10 years as a means for integrating design models with diverse analysis
 models (see the Bibliography for pointers to the main references).  Design and analysis information is typically represented by a collection of interrelated models of varying discipline and fidelity.  Thus a means for capturing diverse multi-fidelity models and their fine-grained relations was needed. It was also desirable for this method to be independent of the specific CAD/E tools used to create, manage, and compute these models.

The COB representation is based on object and constraint graph concepts to gain their modularity and multi-directional capabilities.  Object techniques provide a semantically rich way to organize and reuse the complex relations and properties that naturally underlie engineering models.  Representing relations as constraints makes COBs flexible because constraints can generally accept any combination of I/O information flows.  This multi-directionality enables design sizing and design verification using the same COB-based analysis model.  Engineers perform such activities through out the design process, with the former being characteristic of early design stages and vice versa. 

The COB representation includes several modeling languages. It has lexical forms that are computer interpretable as well as graphical forms that aid human comprehension.  For example, the graphical constraint schematic notation, which has strong electrical schematic analogies, emphasizes object structure and relations among object attributes.  

The references given below include tutorial examples of the main COB concepts.  To help validate the COB representation, other work describes electronic packaging and aerospace test cases implemented in a toolkit called XaiTools™ (an example embodiment of COB concepts).  In all, the test cases utilize some 260 different types of COBs with some 370 relations, including automated solving using commercial math and finite element analysis tools. Today some of these COBs are in production usage to help automate chip package thermal resistance analysis.

Results demonstrate that the COB representation enhances physical behavior modeling and knowledge capture for a wide variety of design models, analysis models, and engineering computing environments.

2.2 Summary of Features

The constrained object (COB) knowledge representation has these overall characteristics:

· Declarative knowledge representation (non-causal)

· Combination of objects and constraint graph techniques

· COBs ( (STEP EXPRESS
 subset) + (constraint graph concepts and views).

Test cases and production usage show that COBs provide these advantages compared to traditional analysis representations:

· Greater solution control

· Richer semantics (e.g., equations wrapped in engineering context)

· Unified views of diverse capabilities (independent of CAD/E methods and tools)

· Capture of reusable knowledge 

· Enhanced development of complex analysis models

Technical capabilities and applications are summarized here:
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Capabilities & features:

–

Various forms: computable lexical forms, graphical forms, etc.

»

Enables both computer automation and human comprehension

–

Sub/supertypes, basic aggregates, multi

-

fidelity objects

–

Multi

-

directionality (I/O changes)

–

Reuses external programs as white box relations

–

Advanced associativity added to COTS frameworks & wrappers

u

Analysis module/template applications (XAI/MRA):

–

Analysis template languages

–

Product model idealizations

–

Explicit associativity relations with design models & other anal

yses

–

White box reuse of existing tools (e.g., FEA, in

-

house codes)

–

Reusable, adaptable analysis building blocks

–

Synthesis (sizing) and verification (analysis)


Target users and associated business benefits include the following:
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COB end user : Designer

(uses COB instances & COB

-

based applications)

–

Automation 

®

Time savings & consistency

–

More analysis 

®

Improved designs

u

COB creator : Analyst

(creates templates with COB definition language)

–

Modularity & reusability 

®

Faster, consistent modeling

–

Semantic richness 

®

Increased understanding

–

Knowledge capture 

®

Enhanced corporate memory

u

COB application developer: Programmer

(uses COB API to create COB

-

based custom applications)

–

Modularity & reusability 

®

Faster, consistent application development


While originally intended for integrating engineering design and analysis models, COBs may have broader usage wherever relation-intensive models are present.
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� In this context “analysis” and “simulation” denote the engineering modeling of physical behavior such as stress, temperature, and voltage.


� STEP EXPRESS [ISO 10303-11] is an object-flavored information modeling standard geared towards the life cycle design and engineering aspects of a product.  For further information, see � HYPERLINK http://www.nist.gov/sc4/ ��http://www.nist.gov/sc4/� .  EXPRESS-G, the graphical form of EXPRESS, is roughly equivalent to the UML class diagram (minus the methods).
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