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CHAPTER FIVE
ISO-STEP

...the opportunity to develop EXPRESS was a chance to improve upon what seemed
to be an inadequate way of thinking about and documenting what we know about
information, which influences our lives so greatly. We are pushed into either of two
corners: one that dealt with data and relationships only and another that entangled
information with every conceivable computer application development detail. From
my point of view, information is certainly more than the former and definitely
should be kept apart from the latter.

Douglas Schenck and Peter Wilson
Preface

Information Modeling the EXPRESS Way
1994

5.1 INTRODUCTION

By 1984, the issues of CAD data translation, as summarized at the end of Chapter Three,
suggested to a number of industry-based research groups in Europe and the US that the time was
appropriate for a new generation of standards efforts. In the US, the new effort was centered
around the Product Data Exchange Standard (PDES). About the same time, the International
Standards Organization (ISO) in Geneva, Switzerland, initiated a Technical Committee, TC184, to
initiate a subcommittee, SC4, to develop a standard called STEP (STandard for the Exchange of
Product Model Data). The full title of the standard is ISO1303 - Industrial Automation Systems -
Product Data Representation and Exchange. The STEP effort was initiated in part because
different European countries were embarking on development of their own standards. Beside
IGES and PDES, there was SET by the French, CAD*I by the Germans, and other efforts such as
VDA-FS and EDIF. After initially operating as parallel but separate activities, the PDES and
STEP efforts merged in 1991. Today, the international committees working on STEP meet
quarterly, twice a year in the USA, once a year in Europe, and once a year in Asia.

This chapter reviews the overall structure of ISO-STEP and its approach to data exchange. It
surveys the various languages—specifically NIAM, EXPRESS and EXPRESS-G—that are used
in developing specifications within STEP and also some of the tools available for implementing
STEP-based translators. In later chapters, we review additional facilities surrounding STEP and
some of the exchange models developed with it. (The reader is warned that these international
standards efforts use many acronyms and are a veritable “alphabet soup".)

The primary motivation for these new efforts in data exchange was the recognition that IGES and

similar efforts had some basic weaknesses that were not easily corrected. The new effort had

objectives to

e incorporate new programming language concepts, especially those dealing with object-
oriented programming

* incorporate formal specifications of the structures defined, using the new recently developed
data modeling languages

e separate the data model from the physical file format
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e support subsets of a total model, allowing clusters of applications to be integrated without the
overhead of having to deal with parts of a model irrelevant to a task

e support alternative physical level implementations, including files, databases and knowledge-
based systems

e incorporate reference models that are common shared subsets of larger standard models

5.2 THE STRUCTURE OF ISO-STEP

An influence on STEP thinking was the work of the American National Standards Institute
{ANSI-SPARC) committee on database architectures and standards. This work distinguished
between database definition and implementation, defining a layered architecture of abstractions
and mappings. The layered architecture consisted of three levels:

Physical: the physical implementation of the conceptual schema on a file system; this level
of definition defines the physical structure of data on disk or other media.

Logical: the information of interest, defined in a logical structure; this level of specification
presents, in an implementation-independent manner, the logical structure of data and the
relationships it holds; the logical level maps to the physical level.

Application: the information subset relevant to a particular application (later called a view);
this level of definition specifies the information needed by a specific application and its
format; the application level was implemented on top of and was derived from the logical
level.

These levels distinguish the logical structure of the information from the format in which it is
carried on some medium. This separation was a fundamental idea in the new STEP approach, as
we shall see. It also separates an application level that is written in or on top of the logical level,
suggesting a way to define subsets of a complete model.

The STEP Committee decided at the outset to use information-modeling methods to specify the
required conceptual structure of the information to be represented. They accepted two information
models as tools to formally specify the conceptual requirements—IDEF1x and NIAM. IDEF1x
had been developed for the definition of defense planning in the US and NIAM was developed for
business database schema design in Europe. The only popular information model not included was
the original Entity-Relationship model (ER) and its extensions. Later, they also added EXPRESS-
G. In addition, they approved development of an intermediate-level specification language for
defining the logical structure of a model, separate from its physical implementation. For this, they
commissioned development of the EXPRESS language.

Rather than define a complete information model and then take subsets of it, the STEP
architecture started instead by defining various part models, called Application Protocols (APs),
with the expectation that they would later be reconciled into larger domain-specific Framework
models. In this respect, the STEP approach has been very different from IGES. In the building
context, this means that APs may be defined for structural steel, reinforced concrete, curtainwalls,
mechanical systems and so forth. A complete building model would logically come only after the
development of some sets of APs. This seems to have been based on the recognition that existing
applications with rich semantic content are clustered into such specialized domains. Another
motivation of the AP approach was the need to generate useful, incremental results quickly.

How are these various ideas organized into a data exchange system? The STEP system
architecture identifies five classes of tools. They are diagrammed in Figure 5.1 with the
information flows between various tools. The five classes of tools are:
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description methods:

standard data

EXPRESS Language,
NIAM and IDEF1x,
EXPRESS-G

integrated resources:
re-usable EXPRESS
constructs

physical file
fomat or other
implementation
method
(SPF)

Application
Reference
Model (ARM), defined in
NIAM, IDEF1x, or
EXPRESS-G

Application Interpreted
Model (AIM):
in EXPRESS

Testing
methodology
and suites

Figure 5.1: A diagrammatic representation of the different Parts of STEP, giving
their names and how they are used. The thin lines designate language use, while the
heavier arrows indicate a mapping realized by a translator. The one heavy line
without an arrow indicates reuse of existing models.

A data exchange system utilizes various description methods, which are the information-
modeling languages employed in specifying the information models used in the architecture,
i.e., to define the Integrated Resources, Application Reference Models and Application
Interpreted Models. The formal description methods include NIAM, IDEF1x, EXPRESS and
EXPRESS-G.

Integrated resources are the common model subsets that get used repeatedly in the definition
of application models. Models used in different domains are called generic integrated
resources and include geometry, material properties and project classifications—that is, items
that can be shared across multiple application domains. Model subsets that are industry
specific are called application integrated resources. These include subsets for electronics,
drafting, kinematics, finite elements and building. Presentation formats are called constructs.

Application protocols (APs) are developed for particular application contexts, using the
Description Methods and Integrated Resources. An application protocol is partitioned into
two aspects: an Application Reference Model (ARM) and an Application Interpreted Model
(AIM). An Application Reference Model represents requirements for an application in a form
easily understood by knowledgeable users, for designing and assessing the information model.
NIAM, IDEF1x and EXPRESS-G are initially used as languages for defining ARMs. An
Application Reference Model is interpreted into an Application Interpreted Model, which is
readable by both people and computers. EXPRESS is the language used to define AIMs. The
AIM resolves all uses of the Generic Integrated Resources and integrates the model with
Application Integrated Resources.

An application protocol is combined with an implementation method to form the basis for a
STEP implementation. An implementation method typically includes multiple resources. The
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STEP physical file (SPF) and the Standard Data Access Interface (SDAI) to the SPF are the
Implementation Methods that have been developed thus far.

5. Finally, each STEP application protocol and implementation requires conformance testing. A
conformance test assesses the implementation in terms of its ARM and AIM and confirms
that the STEP languages and tools have been properly used and interpreted. A Conformance
Testing methodology is applied by accredited organizations. The testing includes application
and interpretation of test suites.

The components of an AP include an Application Reference Model, an Application Interpreted
Model and Conformance Testing requirements. Together, these provide the specific functionality
for an application requirement in a self-contained form. The ARM states the needs of a particular
application and a first order model definition. The AIM specifies a well-defined information
exchange structure, organized for machine interpretation. The Conformance Testing Methodology
specifies the process by which an AP will be accepted.

A major contribution to the field of product modeling has been the development of the EXPRESS
language. EXPRESS was conceived as a means for specifying the structure of data, as an
intermediary between an ARM and a Physical Implementation. It was conceived to support a
variety of implementations, including flat file formats—either binary or ASCIl—and also
relational or object-oriented database formats. Originally, it was assumed that the translation from
an ARM to an AIM would be done manually, and the ARM would serve to verify that the AIM
was specified correctly. However, mapping tables were developed early that specified regular
ways to translate the constructs of the IDEFIx and NIAM data modeling languages into an
equivalent EXPRESS construct. Recently, translators or compilers that automatically generate an
EXPRESS model from a NIAM or IDEF1x model have been developed. This has simplified the
generation of Application Interpreted Models. Also, STEP activities have increasingly used
EXPRESS—especially in its graphic format (EXPRESS-G)—for defining ARMs. Translation
between EXPRESS-G and EXPRESS is widely supported.

Interpreted Resources provide a set of resource models that may be utilized within different
Application Protocols. They are specified as an AIM, facilitating their assimilation into multiple
APs. As ARMs are interpreted into AIMs, they are adjusted to allow integration of relevant
Integrated Resources. Two levels of resources have been defined: Generic Resources, which have
general use across applications, and Application Resources, which support one application or a
cluster of similar applications. It has been assumed that Application Resources would be
incrementally defined post facto, as parts of models developed in one application are found to be
needed in others. More recently, this approach to Application Resources is being reconsidered.

STEP TOOLS
Reference Description Methods: NIAM, IDEF1x, EXPRESS-G
Application Description Models: EXPRESS
Implementation Methods: SDAI
STEP MODELS AND DATA
Exchange Data
Application Interpreted Constructs
Application Interpreted Models
Application Reterence Models

Figure 5.2: A layered representation of the ISO-STEP architecture.
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Another way to visualize the STEP architecture considers STEP resources and models in terms of
a layered system architecture, as shown in Figure 5.2. The base facilities are defined at the center,
with the facilities that use them outside, in layers resembling an onion. The wedge in the lower
right of the onion represents language resources. Thus information flows are between layers in
Figure 5.2. The figure shows the three levels of the application model for generating exchange
data, with reference and interpreted models being supported by Integrated Resources. The outer
layers build upon the resources of the interior ones.

APPLICATION PROTOCOLS

: explicit draughting 219: dimensional inspection process planning

: associative draughting 220: printed circuit assembly mfg. planning

: configuration controlled design 221: functional and schematic representation of AEC

: mechanical design using boundary rep. process plants

: mechanical design using surface rep. 222: exchange between design and manufacturing for

: mechanical design using wire-frame rep. composite structures

: sheet metal die planning and design 223: exchange between design and manufacturing for

: life cycle product change process cast parts

: design through analysis of composite and metallicl§ 224: mechanical product definition for process
structures planning using form features

: electronic printed circuit assembly, design and 225: structural building elements using explicit shape
manufacture representation

: electronic test, diagnostics and remanufacture 226: ship mechanical systems

: electro-technical plants 227: plant spatial configuration

- NC process plans for machined parts 228: building services: HVAC

: core data for automotive design processes 229: forged parts

: ship arrangements 230: building structural frame: steelwork

: ship moulded forms | 231: process engineering data

: ship piping

: ship structures

. INTEGRATED RESOURCES

GENERIC APPLICATION CONSTRUCTS

41: fundamentals of product 101: draughting § 501: edge-based wireframe
description and support 103: electrical applications 502: shell-based wireframe

42: geometric and topological rep. 104: finite element analysis 503: geometry bounded 2-D

43: representation structures 105: kinematics : wireframe

44: product structure configuration 106: building core model 8 504: draughting annotation

45: materials 505: drawing structure and

46: visual presentation administration

47 shape variation tolerances Bl 506: draughting elements

48: form features i 507: geometry bounded surfaces

49: process structure, property and 508: non-manifold surfaces

representation
DESCRIPTION METHODS

11: the EXPRESS language reference manual ~ APPLICATION REFERENCE MODEL LANGUAGES - )
12: the EXPRESS-I language reference manual  NIAM - IDEF1x - EXPRESS-G

IMPLEMENTATION CONFORMANCE TESTING ABSTRACT TEST SUITES
METHODS 31: general concepts 1201: ATS for 201
21: clear text encoding (file format) 32: requirements on testing 1202: ATS for 202
22: standard data access interface laboratories 1203: ATS for 203
(SDAD 33: abstract test suites
23: Early C++ bindings 34: abstract test methods
24: Late C++ bindings

Figure 5.3: The numbers and titles of STEP Parts, as specified in early 1996.
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The listing of the different STEP Part definitions that have been at least initiated, as of early 1998,
is shown in Figure 5.3. Each ISO1303 series is published as a separate Part. Parts are grouped into
one of the following classes: Application Protocols, Description Methods, Integrated Resources,
Implementation Methods and Conformance Testing, as shown in the figure. Because the need for
solutions for data interchange problems has been so great, pressures have been exerted to develop
even limited solutions. As a result, draft forms of many Integrated Resources and Application
Protocols have been developed in parallel, even with the Description Methods not being complete.

As can be seen, the ISO 10303 efforts are wide-ranging, and it is non-trivial to comprehend their
full extent. The Part models initiated for the building industry thus far are 225 (structural building
elements using explicit shapes), 228 (building services, HVAC), and 230 (building structural steel
frame), and the Integrated Resource Part 106 (building construction core model). In addition, we
must understand the Part models that the building-specific models use. These include Part 11
(EXPRESS), Parts 41-43, which provide the ownership, state, and geometry for building parts,
and Part 45, which defines materials. For implementations, we need to understand Parts 21, 22, 23
and 24.

In the rest of this chapter, we focus on Part 11 (EXPRESS) and another frequently used ARM
language, NIAM. We also will review Parts 21-24 to provide an overview of implementation
tools. The next chapter, Chapter Six, surveys Parts 41, 42 and 43. Chapter Seven includes reviews
of Part 230 and 228 and other work on aspect models, while Chapter Eight includes a survey of
Part 106 (Building Construction Core Model) and other similar efforts.

5.3 IMPLEMENTATION CONCEPT

Most of the attention and people involved in STEP activities focus on the definition of various
product models, both as Application Protocols and Integrated Resources. However, a product
model is not of much use if it does not support implementation of a data exchange mechanism.
That is its ultimate purpose. The purpose of a logical model, represented in EXPRESS, is to
define the structure and format of data instances that correspond to that model, for exchange with
another application.

7
building M~ ]
L application
N storage
NIAM, (ARM) J mapping § C or C++['K medit?m
IDEF1x, or 1 tables interface
EXPRESS-G ~ e ———— vy 11m11°10101°1
WS ot i S aS
ar () gy | e
= 000101010101100101
e et g ; EXPRESS maps between 8:1100101010100101
1 model MEXPRESS data and

AlIC
models

Figure 5.4: The general implementation approach used in STEP.

| storage medium

To gain an overall picture of the intended operation of STEP, it is useful to consider the process in
three steps, which can be interpreted from Figure 5.4. The Application Protocol development
process goes from the ARM (expressed in IDEFix , NIAM or EXPRESS-G) to the AIM
(represented in EXPRESS). It typically includes references to Application Integrated Constructs,
for example, for defining standard geometries. The AIM is generated using mapping tables that
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define the correspondence between ARM constructs and EXPRESS. The AIM is verified, in part,
using a parser/verifier.

In order to write STEP conformant data into a storage medium or read it, a mapping structure,
written in C or C++, is defined that corresponds to the Entities in the EXPRESS model. There are
different methods for generating this mapping structure. It provides an in-between format between
a building application and some storage medium. If the application can be extended to incorporate
the mapping structure, it can copy its entities into the mapping structure'’s Entities. Alternatively,
the application may write its entities to a file, which can be read by the mapping structure. The
mapping structures have interfaces to write to various storage media, including a file and database
formats. After one application writes to the storage medium, another can read it, using the same
EXPRESS Entities that were used for writing. In this case, the mapping structures read the entities
and either copy them to a second application’s data structures, or to a file format readable by the
second application. Later, in Section 5.8, we review this process in greater detail.

An important aspect of the STEP data exchange architecture is the use of mapping tables.
Conceptually, a mapping table is a table of equivalencies, i.e.,

REAL in ASCII format
Double in EXPRESS
Cartesian point in Part 42

Real in IEEE double precision format
Double in C++

same on a file

Cartesian point on file in Part 42 format Cartesian point in CAD application
Location point in Part 42 format

Wall in Part 106 format

Location point in CAD application
Wall in CAD system format

N A A A

The function of the mapping table is to guide a program; when it encounters the entity on the left-
hand side, it is to write out the entity on the right-hand side. Clearly, the definition of such a
mapping table ranges from being simple to extremely complex. All computer languages do the
first mapping whenever they read or write a real number; the second mapping should not be any
harder. A Cartesian point in Part 42 is three REAL numbers, so the second and third mappings
should also not be hard. But what about the last one, regarding walls? How can we define the
structure of a wall and then map it to some other format? The important point to remember is that
all computer models are compositions of a few primitive data types and structures for grouping
them. If the primitives and structures are defined in the mapping table, all higher-level entities
defined as compositions can be mapped in terms of the primitives and structures. It is generally on
this basis that mapping tables are generated, as we shall see. Mappings are required in many places
for data exchange: between an external application and an EXPRESS model, between EXPRESS
and a text file, or between EXPRESS and a database. Mapping and mapping tables are at the heart
of data exchange and will be encountered many times throughout this and later chapters.

IGES and other early, neutral file formats had the problem that the data held in the model
representation also included comments, scoping rules and other information structured for human,
rather than computer, recognition. It was recognized that the specification for the information
model should be separate from the data itself. This is realized in the above scenario, with
EXPRESS providing the comments and format instructions for the data stored. The stored data can
be very compact. The data could be written to a file, to a database or other information repository.
In practice, the main work has relied on files.

The following sections review three of the tools used in STEP. We examine two ARM methods:
NIAM and EXPRESS-G. Both are presented in detail, but serious use should be based on the
official documentation. Examples are developed in both languages, facilitating comparison.
EXPRESS is also presented, with sufficient detail for beginning use.
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5.4 ARM DESCRIPTION METHODS

The STEP Description Methods address several different aspects of the specification of a data
exchange process. The two most widely used aspects are the Description Methods used for
defining ARMs and the Description Methods used for defining AIMs. ARMs are typically defined
in either the NIAM information modeling language or EXPRESS-G. Another language used is
IDEF1x. AIMs are uniformly defined in the EXPRESS schema definition language. (EXPRESS-G
is a graphical version of EXPRESS, allowing translation from EXPRESS-G to EXPRESS to be
almost transparent.) In this section, we provide an overview description of NIAM. Since the other
language for defining Application Reference Models, EXPRESS-G, is a graphical implementation
of EXPRESS, it will be reviewed after EXPRESS, which is discussed in the next section.

The development of an ARM begins with the definition of the Application Protocol’s scope and
requirements. What functional requirements should the AP fulfill? The STEP guidelines
recommend the following be used to develop an ARM:

the classes of external applications that the AP is to support

example objects to be represented

usage scenarios for the AP

a definition of the scope of the AP, regarding both what is inside and what is outside the
scope of the AP

These requirements are then defined more strongly as Units of Functionality (UOF). UOF is a
STEP term referring to the general entities, attributes and relations that convey the concepts within
an AP. A critical membership criterion is applied: if any component of the UQF is removed, the
concepts should be rendered incomplete or ambiguous. The UOF is usually defined in words; after
agreement on it, the UOF is defined more rigorously, using an ARM Description Method. The
purpose of ARM Description Methods is to specify at a detailed level the requirements for an
Application Protocol or for a shared Integrated Resource. Thus, an ARM definition is the
permanent, recorded basis for defining any later model.

5.4.1 NIAM

In 1977, Dr. G. M. Nijssen of CDC Europe developed one of the most widely used data modeling
descriptions applied for the design of databases, the Nijssen’s Information Analysis Method
(NIAM). Dr. Nijssen developed NIAM as a database design methodology, supporting information
exchange between a user and a computer, using elementary sentences. He had in mind relational
databases and conceptualized NIAM as a means to translate written or verbal information into a
database schema.

PamiN TN P ek
o ¢ \ 'I \l ’ Y
I 1t INTEGER!
' "REAL} ) \BOOLEA!}
\5—’ \h—’ \h‘,

Non-Lexical Object Examples: Lexical Object Examples:

Figure 5.5: Objects in NIAM are of two types: Lexical Objects (LOTS) and Non-
Lexical Objects (NOLOTS).

NIAM relies on an information-processing model of functional transformation—that is, it uses
functions to transform information from one form to another. It provides a small set of constructs,
which are the building blocks with which users can define higher-level constructs. There are two
main primitives. One is the object, which is of two types: the lexical object type (LOT), and the
nonlexical object type (NOLOT). The object in NIAM does not have any relation with object-
oriented (OO) systems. A NOLOT corresponds closely to the concept of entity; it may depict
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conceptual classes of things or large aggregations of attributes. LOTS are those objects that are
names or values of NOLOTS and have a type and coding rules. They are used for identifiers or
attributes. LOTS are dependent upon the NOLOT they describe and are deleted if their NOLOT is
deleted. Their graphical representation is shown in Figure 5.5. An Object with an enclosing box is
a non-terminal, indicating that the details of the Object are defined elsewhere. Object is a class that
has instances (called Entity in EXPRESS). Thus in Figure 5.5, there may be a variable number of
wall, space, module and hole members. There may be a variable number of REAL,
INTEGER and BOOLEAN LOTS.

The other main NIAM primitive is the Role, which corresponds to a relationship between Objects.
Roles are usually binary and bi-directional—that is, they usually exist between two Objects and
define a reciprocal relation. Occasionally, Roles have more than two Objects. The graphical
notation for Roles is shown in Figure 5.6. Each Role has a box for each Object associated with it,
with a name or attribute for the Object’s part in the Role.

located at
aligns with

relation of Ato B Iocated.on
has on it

relation of Bto A
Sr0

IDEA ROLE EXAMPLES

relation of Ato B _____area st_address

relation of Bto A area_of address_of

,/ \\ ,/ - \\ ,’ \\
@—Eﬁq\ B @ [} REAL @ [TT-sTRNg
BRIDGE ROLE EXAMPLES

wall
opening

SUBTYPE EXAMPLES

Figure 5.6: Roles within NIAM are usually binary. Roles are of two types: idea and
bridge. A special type of Role is subtype, where the NOLOTs and Roles of one
object are also those of another object.

Roles are of different types. Idea Roles are between NOLOTS—for example, between lot and
house or between column, row and aisle. Bridge Roles are between a NOLOT and the LOTS that
describe it. The box descriptors are the attribute names for the LOT. Subtype is an inheritance
relation between two NOLOTS. These three Roles are the base structures within NIAM. The
semantic richness of NIAM, however, arises from its many constraints, which are rules restricting
the form of Role allowed between LOTs, NOLOTS, idea types, bridge types and subtypes.

One set of major constraints deals with Uniqueness. Some examples of Uniqueness constraints are
shown in Figure 5.7. The bar on one side of a Role box indicates that that side has zero or one
member in the Role and that no duplicates are allowed. Uniqueness allows one Object to identify
the other. A continuous bar indicates that both Objects may be duplicated but the Role cannot. No
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bar indicates that the Role can be duplicated as well as the Objects. In the examples shown, a
house may be on zero or one lot, but a lot may have any number of houses. A wheel is on at most
one car, but a car may have multiple wheels. On the other hand, a door has only one threshold, and
a threshold has only one door. Similarly, an auto has one engine, and an engine has one auto. A
room is bounded by multiple walls and a wall bounds multiple rooms. Last, a room may be
accessible by zero, one or more corridors, and a corridor may provide access to zero, one or more
rooms. Thus a one-sided bar indicates a one-to-many relation, bars on both sides (not continuous)
indicate a one-to-one relation and a continuous bar indicates many-to-many.

relation of Ato B — hasonit

relation of Bto A

on
has on it
L1 ° @ . @

EXAMPLES

relation of Ato B has

relation of B to A under
(soor ()

EXAMPLES

is powered by

is accessed by
provides access to

relation of Ato B _____ bounds

i A is bounded by
(&) ()

EXAMPLES

Figure 5.7: The uniqueness constraints delimit the arity of a Role and also the uniqueness of
values. Uniqueness may be one-to-many, one-to-one, or many-to-many. The Total constraint is
shown with a V intersecting the Role line.

Uniqueness is a fundamental relation in NIAM because of the major impact it has on the design of
relational database schemas. Uniqueness provides a general definition of the arity of a Role.
Sometime a specific number of Objects in a Role are required. Optionally, arity can be defined by
noting the lower and upper bounds on the number of Objects that may participate in a Role.
Examples are shown in Figure 5.8. This may be meaningful for Roles that are not one-to-one.

has — hasonit
provided for

relation of Ato B
relation of B to A

ARITY EXAMPLES
Figure 5.8: The arity constraints delimit the bounds on the number of objects that
may be members of a Role.

Another important constraint is the Total constraint. It enforces the condition that at least one
Object instance in a relation must exist. If it is deleted, the other Object in the relation is also
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deleted. Thus it defines dependency. In the examples in Figure 5.7, the wheels are dependent upon
the auto and below it, the engine is dependent upon the auto. The total constraint is denoted by a V
intersecting the Role line. In the two examples, if the auto is deleted, so are all its wheels and so is
its engine.

SUBSET EXAMPLES

fY-value!
\ 1
~ rd

-~

EQUAL EXAMPLES

Figure 5.9: Constraints that apply to Roles are the subset, uniqueness and equality
constraints.

Other constraints apply to multiple Roles. The subset, uniqueness and equality constraints are
diagrammed in Figure 5.9. The subset constraint may apply to LOTs or NOLOTs. It specifies that
an instance value for one attribute must also be an instance value of another attribute. In the
examples of Figure 5.9, all specific window models are members of the set of all windows, and all
corridors are members of the set of all spaces. The uniqueness constraint identifies a set of LOTs
that uniquely define a NOLOT. The equality constraint requires that there are equivalent sets of
Objects in the related Roles. In the éxample, one relation defines adjacency and the other defines
visibility; both have the same membership.

Another set of constraints—inheritance constraints—applies to Subtypes. The mutual exclusion
constraint imposes that no member of one subtype may also be a member of another subtype. As
shown in Figure 5.10, an opening may be a door or a window, but no instance may be a member
of both NOLOTS. (Sliding glass doors cannot be defined as members of both, for example.) Also,
an instance of vertical circulation cannot be both a member of stair and elevator. Another Subtype
constraint is Total, which means that there are no members of the supertype that are not members
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of the subtypes. For example, all pass-thrus are either flexible pass-thrus or rigid pass-thrus.
Similarly, all members of vertical circulation are either stairs or elevators (dumbwaiters are
excluded).

S50

MUTUAL EXCLUSION EXAMPLES

S50

TOTAL EXAMPLES

Figure 5.10: Mutual exclusion and total constraints apply to subtypes.

Supposedly, the conceptual basis of NIAM is natural language. It was conceived, however, to
generate as output a relational database schema and is supported by various tools sold by Control
Data Corporation and others. Its semantics were defined so as to have an implementation in
relational databases. A variety of special constraint implementations have been developed for
relational databases that correspond to the NIAM constraints defined above.

radius center_pt x_coord

\hﬂl

Figure 5.11: An arc modeled in NIAM.

5.4.2 NIAM EXAMPLES

In order to demonstrate the NIAM information-modeling language for product modeling, we use it
to model the three examples introduced in Chapter Three: the arc, the bounded planar surface and
the multi-view wall.
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The arc is shown in Figure 5.11, defined as a point, two angles and a radius. All information is
dependent upon the arc Object; if it is deleted, the other parts are also. All entities are unique,
without duplicates. There is exactly one of each.

The bounded plane is shown in Figure 5.12, defined as a surface and a bounding polygon. In both
cases, the definitions are simple: the surface is one of several subtypes, one of which is a plane. A
surface can be of only one of these types. The plane is defined as a single point and single vector
indicating its slope. The polygon is a sequence of points, where a point is defined as 0 to 3
coordinates. Again, all parts are dependent upon the bounded polygon; if it is deleted, the parts are
also. All parts of the surface are unique to the surface and one-to-one. There may be multiple
bounding polygons, however.

Aspects of the wall are defined separately, then combined later, The first part of the wall model
defines the aggregate description of the overall wall and its top-level components (see Figure
5.13). The aggregate wall is defined here in terms of its geometry and thermal properties (other
properties could easily be added). It is bounded by a number of boundary entities, of which wall is
one subtype. The wall geometry has three views: plan, elevation, and BRep model. Each is defined
by its component geometric entities. The geometry level carries a location for all the component
geometric descriptions. The symbol has a many-to-one relation with geometry, while the location,
solid and p-line have one-to-one relations. Multiple p-lines are defined supporting both elevation
and plan. The thermal property has a single value, the U-value. All properties are dependent upon
the wall, except pass-thru, which is defined independently of the wall and hence will not be
deleted if the wall is.

base_surface

-
-
_____

Figure 5.12: The bounded plane example, defined in NIAM.

As its parts, the wall has openings, pass-thrus, and segments. Segments and openings are
dependent upon the wall, and have a many-to-one relation. Pass-thrus have a many-to-many
relation and are not dependent upon a wall. Segments, openings and pass-thrus are all references
to other definitions.
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Figure 5.13: The top-level definition of the core wall, defined in NIAM.

The definition for openings is shown in Figure 5.14. Every opening has a thermal U-value
attribute and a geometry Object carrying a location, an area, and a polyline outlining the opening.
Filled openings are specialized from openings to carry the geometric definition of the filler. Two
views are offered: a symbol for plan and elevation and a solid for 3D modeling. Windows and
doors are specializations of filled openings.
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Figure 5.14: The NIAM definition of openings within a core wall.
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Figure 5.15: The NIAM definition of pass-thrus for the core wall definition.

A pass-thru is a generalization of any Object that passes through the wall using it as a chase
(Figure 5.15). Pass-thrus are assumed to have one or two views: a centerline for rough layout (p-
line) and possibly a solid model for detail layout. Geometry carries its location. Specializations of
pass-thrus include structural, electrical and plumbing entities.
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Figure 5.16: NIAM definition of a wall Figure 5.17: NIAM figure of
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segment.

The major construct defining the solid part of a wall is the segment (Figure 5.16). A segment is a
region of a wall with a consistently layered cross-section. At this level, a segment geometry
specifies its location and carries a polyline defining its extent in elevation and the corresponding
surface area. The segment geometry also has two offsets to each side of the wall, defining the
thickness for this segment. It also has a U-value as the partial result from thermal analysis. The
segment is further broken down into core, insulation and surface. All properties are dependent
upon the segment, i.e., there is a total constraint. Most Objects have arity one. The coordinates are
constrained to have up to two values.

Insulation has two properties: its resistance, or r-value, and its thickness, which often determines

its r-value (see Figure 5.17). All properties hold one-to-one relations and depend upon the
insulation Object.
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The core of a wall segment defines its inner structure, which is assumed to provide its structural
rigidity (see Figure 5.18). It is defined geometrically by a location, two offsets from a centerline,
and a solid model (for exact shape definition). The core also has a thermal r-value. The core has a
variety of specializations, some of which are included.

placed_at Z r-value

N>
N\ {REAL,
brick . ~_~

Figure5.18: NIAM definition of core of wall segment.

Surfaces are layered on both sides of the core to make up the finished segment (see Figure 5.19).
Multiple surfaces may be laid on top of one another. The geometry of a surface is defined
according to the side it is on, its order of placement and its thickness. An attribute r-value is
included.

Figure 5.19: NIAM definition of the surface of a segment.

All of these aspects are combined into the overall NIAM core wall model, shown in Figure 5.20. It
suggests the necessary complexity of a wall definition needed to support a range of applications.
Some examples of core construction materials are offered as subtypes in the model.

5.4.3 SUMMARY

NIAM is an evolving language with alternative notations. The original documents present itas a
conceptual-modeling language, meant to capture the semantics of a situation, independent of any
database implementation. Later it*began to acquire properties needed for automatic schema
definition of relational database models. This evolution is evident from early publications
describing the language to the most recent ones. We have presented a version that is an extension
of the earlier versions, with an expanded set of attributes, which seems most commonly used
within the product-modeling community. While this section presents most of the constraints
developed or proposed for NIAM, new ones are added every few years.
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Figure 5.20: The various parts of the NIAM wall model combined.

NIAM’s entity structure is extremely simple, defined in terms of Objects and Roles. It is
elaborated by many kinds of constraints, some of which have subtle definitions. The texts written
by the developers of NIAM emphasize the conceptual and intuitive aspects of modeling, but these
seem ambiguous if there are not also clear operational distinctions. For data modeling, the
operational distinctions are the specific forms of the data model required. A strength of NIAM is
that it makes no distinction between a relation (defined as a Role) and an attribute. This distinction
is imposed in some other models and, as such, is sometimes unclear. Also, NIAM provides a rich
set of constraints or validation rules for which implementations have been defined in relational
databases.

Yet for all this richness, several limitations are apparent for NIAM’s use in product modeling. It
has no means to represent several important constructs that are also missing from the relational
model. For example, the rule that the order and side of a surface must be unique for a segment, and
that the order must be a complete numbering, cannot be easily expressed. Composition rules that
specify what is allowed in a particular composition cannot be specified. Also the consistency of
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geometrical relations, or the values carried at various levels of aggregation for thermal
performance, cannot be expressed. As a graphical language, its use has been to define new

schemas from scratch, not to revise existing schemas. Thus, it does not support model extension or
evolution.

Though having a few shortcomings, NIAM has a significant audience and continues to be used to
develop ARM:s for various new application protocols within the STEP community.

5.5 EXPRESS - THE AIM DESCRIPTION METHOD

EXPRESS is the language developed within the ISO-STEP community for representing
application interpreted models. It came into existence in a US Air Force project named Product
Definition Data Interface and contracted to McDonnell Douglas. EXPRESS was developed by
Douglas Schenck and has been under development since about 1986, when it received its current
name. The purpose of EXPRESS is to represent a product model in an implementation
independent manner, as interpreted from an Application Reference Model (ARM). That is, itisa
representation of the knowledge to be embedded in a product model, interpreted to take advantage
of shared Integrated Resources (reviewed in Chapter Six) and rationalized with other related
application protocols.

EXPRESS’s syntax is similar to that found in modern programming languages. It is used in the
way one would define the data structures in a programming language. Its effect is also similar, in
that it defines how instances of defined objects will be organized for use. It is different from a
programming language in a few important aspects, however, and these differences must be kept in
mind when examining or using it. This section presents its functionality along with its syntax. The
following sections provide a working overview of EXPRESS Version 1.0.

5.5.1 SCHEMAS

The unit of definition in EXPRESS is a schema. A schema defines the universe of discourse
(UoD) in which declared objects are given mutually dependent meanings and purposes. An
EXPRESS schema is the normal representation of both AIMs and Application Interpreted
Constructs (AICs). As defined in the EXPRESS manual, an EXPRESS information model consists
of schemas that include definitions of things (entities, types, functions, procedures), rules defining
relationships between things, and rules on relationships. EXPRESS includes a full, procedural
language syntax for specifying rules. The rules defined in EXPRESS cannot be executed,
however, but serve as guides for the implementation of translators. (Proposals exist to change
this.)

EXPRESS is a block-structured language, like Pascal or C. All types have scopes, which are
identified by the block in which they are defined. A block begins with the declaration of an Entity,
Function, Procedure Rule or schema and ends at the end of Entity, Function, Procedure Rule or
schema. When an identifier in one block is redefined in an inner block, the inner block declaration
overrides the outer one, for the extent of the inner block. Any declarations outside a schema are
within a global block referred to as the UoD.

An information model may be defined by more than one schema. There are special mechanisms to
make cross references across schemas, but they require a different syntax in relation to references
within the same schema. Thus, one schema can be linked to other schemas using the USE and
REFERENCE specifications.

EXPRESS code may include comments and other non-interpreted text. These are bracketed with
(* and *). Comments may also be appended to a line with --.
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--Here is a comment:
(* Here is another comment. *)

5.5.2 IDENTIFIERS

The general convention that is followed is to define identifiers in lower case, and to capitalize all
reserved words. Identifiers must begin with a character and may include other characters, digits
and the underscore character. The characters for blankspace (), tab, arithmetic operations, period
(.) and comma (,) are not allowed in identifiers.

5.5.3 BASIC TYPES
EXPRESS provides a set of basic types that are predefined and available to use in the definition of
higher level types.

The Basic Types are

NUMBER, REAL, INTEGER, STRING, LOGICAL, BOOLEAN and
BINARY.

INTEGER is an unconstrained whole number. REAL is an unconstrained rational, irrational or
scientific number. Scientific numbers may be constrained to a specified precision. NUMBER is a
supertype of INTEGER and REAL. STRING is a quoted list of characters, bounded by single
quotes. LOGICAL types have the values (TRUE, FALSE, UNKNOWN) while BOOLEAN only
has (TRUE, FALSE). BINARY is a vector of binary values, with user-defined encoding.

Both STRING and BINARY are variable length vectors. They may have a specified length. When
a length is defined, up to that many may be assigned. When the length is specified and appended
by FIXED, then all assignments must be of exactly that length. But, if it is not specified, the
length is variable. For example

sl: STRING; (* variable length string *)
s2: STRING(10); (* variable length up to 10 characters*)
bl: BINARY(10) FIXED; (* exactly 10 bit flags *)

EXPRESS also has an enumeration type, where the possible values are defined explicitly. For
example

TYPE compass_direction =
ENUMERATION OF (south, north, east, west);
END_TYPE;

5.5.4 CONSTRUCTORS

Variables and other structures can be aggregated into larger groupings, using constructors.
Constructors group things of the same type; in EXPRESS they include the array, bag, list
and set.

ARRAY is used to define an ordered list of elements of fixed size. Arrays may be concatenated,
e.g.,

matrix : ARRAY([1:4] OF ARRAY([1:4] OF REAL;

In ARRAY, both the lower and upper bound must be defined (where lower_bound <
upper_bound). There will be (upper_bound - lower_bound + 1) items in the array. Items are
accessed by the array name and a subscript, e.g., matrix [3]1[1].
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BAG is an unordered collection of like elements. Duplicates are allowed. Its lower bound and
upper bound may or may not be specified. If the lower bound is specified, there must be at least
the lower bound of things assigned to the bag. If the upper bound is assigned, it indicates the
maximum number of members it can hold. If the bounds are not defined, it is assumed that the
bounds are {0:?1.As an example,

bag_of_points : BAG[1:?] OF point;
means that there must be at least one point in bag_of_po ints.

LIST is an ordered collection of like elements, similar to the ARRAY, but LIST may have a
variable length. Thus:

list_of_points : LIST[0:?] OF point;

means that there may be any number of points in the LIST, including zero. The LIST may grow
or shrink but remains ordered, with the subscripts as assigned.

SET is an unordered collection of like elements. Duplicates are not allowed. SETs may be of
fixed or variable size. An example might be

set_of_names : SET OF [1:100] OF name;

set_of_names must have a membership of at least 1 and not more than 100 members. If either
or both the lower and upper bounds are left undefined, the default is that there may be zero or any
number of members in the SET.

A generalization of all the constructor types is the AGGREGATE. AGGREGATE may be used in
any declaration where any of the constructors may be utilized.

In general, access to items in any aggregate (ARRAY, BAG, LIST, SET) is by using
subscripts ranging from the lower to the upper bounds.

Basic Types may be used to specify higher level user-defined Types, e.g.,

TYPE area = REAL;
END_TYPE;

TYPE name = STRING;
END_TYPE;

A type definition must end with END_TYPE.

Another type definition allows specification of a type that is a selection from among a set of
types. EXPRESS calls this a SELECT TYPE. In other languages, such a construct is sometimes
called a union type. A SELECT TYPE is also a generalization of other types. Some examples
follow:

TYPE NUMBER = SELECT (REAL, INTEGER) ;
END_TYPE;

TYPE connection = SELECT(nail,screw,bolt,glue);
END_TYPE;"
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Constructors extend the means to specify Defined Types from Basic Types, and to specify other
Defined Types from Basic or Defined Types. A limitation is that all elements of a constructor are
of the same type.

TYPE column_row = LIST[1:?] OF line;
END_TYPE;

TYPE column_aisle = LIST[1:?] OF line;
END_TYPE;

TYPE color_value = INTEGER;
END_TYPE;

TYPE rgb_color = ARRAY{1:3] OF color_value;
END_TYPE;

The first two types listed above are defined for row and aisle. By starting with one, they are
required to have at least one member in the list (not that the subscripts start at 1). If no subscript is
defined for a constructor type, the default is [0:?]. Constructor types are only defined to
provide high-level types to be used in attributes. That is, they are not Entities and cannot be
instantiated.

5.5.5 ENTITIES

The general object type, from which instances of objects are made, is called the Entity. It supports
definition of a wide range of complex elements, which we will consider incrementally below.

The basic Entity definition has the format:

ENTITY point;
X,¥Y.2 : REAL;
END_ENTITY;

This point may have instances that may be independent of any line or arc. Instances of point
may be defined, while a type may only be used to define an Entity or another type.

Entities can be inherited or subtyped into other Entities. For example,

ENTITY homogeneous_point
SUBTYPE OF (point);
w : REAL;

END_ENTITY;

An equivalent declaration would be for point to be declared as a SUPERTYPE of pointl. An
Entity may define both SUBTYPE and SUPERTYPE relations with other types. It may be a
SUBTYPE to zero, one, or more than one other types. Similarly, an Entity may be a SUPERTYPE
to any number of subtypes. Either the SUPERTYPE or the SUBTYPE may define a relation
between the two Entity types. One or both Entity types may carry the relation declaration.
However, all SUPERTYPE and SUBTYPE declarations, taken together, must be consistent with a
directed acyclic graph. That is, an Entity cannot both a SUBTYPE and a SUPERTYPE of the same
Entity, at any level of the relationship. There can be no cycles in the Entity subtype graph.

A SUBTYPE inherits all attributes of the SUPERTYPE, including DERIVED and INVERSE
attributes. Domain constraints defined as WHERE clauses (discussed in the next section) are also
inherited. Overwriting of rules, allowed in some languages, is not allowed in EXPRESS. This
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restriction addresses the consistency of polymorphic types (discussed in Chapter Four) in a strong
manner.

5.5.6 ATTRIBUTES

Attributes in EXPRESS are of three general kinds:

Explicit: the values will be provided directly

Derived: the values can be calculated from other attributes

Inverse: captures the relationship between the Entity being declared and a named attribute
The attributes have a representation, which might be a simple data type (such as integer) or
another Entity type. A relationship is established between the attribute being defined and the types
or Entities that define it. In the default case, the schema instance is only correct if a value exists
for the attribute, that is, if the relation is mandatory. If an empty value is allowed, an attribute is
declared as OPTIONAL.

5.5.6.1 Explicit Attributes

Explicit attributes are the information units used to characterize the properties of some Entity.
They may be classified as

Simple types: These cannot be further subdivided into elements; they are NUMBER, REAL,

INTEGER, STRING, BOOLEAN, LOGICAL and BINARY

Aggregate types: These are groupings of the same type using oné of the constructors

Entity type: These are object types declared by Entity declarations. Like other attributes,

using an Entity as an attribute’s data type establishes a relationship between two Entities
Qualified attributes are used to define a pathname from the current Entity to an attribute within an
inherited Entity. ‘

Inverse attributes capture the relationship between the Entity being declared and any named
attribute that uses it as an attribute value. That is, inverse attributes define a backpointer
referencing an Entity that uses the current one as an explicit attribute. Inverse attributes may be
constructor types with cardinality or other constraints.

5.5.6.2 Derived Attributes

In addition to explicit attributes that are given assigned values, EXPRESS also supports derived
attributes, which are not loaded as data, but derived from other values carried within an Entity.
Derived attributes are identified by DERIVE:

ENTITY circle3d;

center : point;

radius : REAL;

axis : vector;
DERIVE

area : REAL := pi * radius ** 2;
END_ENTITY;

Thus the attribute area can be accessed just like other attributes, but is computed at the time it is
accessed. The scope of attributes that can be accessed within a DERIVE expression is the Entity
in which the DERIVE expression is located.

EXPRESS also provides a UNIQUE clause that can be applied to any attribute. It specifies that
each instance of the Entity must have a unique value of that attribute that is not duplicated
anywhere within the SCHEMA.
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5.5.6.3 Inverse attributes
Often, an attribute defines a relation between the Entity carried by the attribute and some other
Entity. For example,

ENTITY line;
point_ref : ARRAY[1:2] OF pointl;
END_ENTITY;

defines a relation between a line instance and two point instances. Sometimes we may require that
the relationship is two-way. That is, a relation also exists from the point to the line it bounds. This
may be defined as

ENTITY pointl;

X,¥,z : REAL;

line_ref : SET OF line;
END_ENTITY;

where only points that are part of a line may be of type point1. But now we have two relations
that are related to each other. There are supposed to be two matching attributes; if 1ine instance
a has a point_ref attribute referencing point instance b, then point instance b should have a
line_ref attribute referencing line a. Multiple lines may refer to a point1l instance. Any
updates to a line or point instance would have to maintain this relation between the attributes.

The INVERSE attribute imposes a symmetry rule between an existing relation and itself. It
automatically creates and maintains the relation between the attributes, always defining the inverse
automatically from the relation. For the point1 Entity above, it would be defined as follows:

ENTITY pointl;

X,Y.,Z : REAL;
INVERSE

line_ref : SET OF line FOR point_ref;
END_ENTITY;

The 1ine_ref attribute of point1 is the inverse of the point_ref attribute in Entity 1ine.
Any time that point_ref is updated, line_ref in the affected point1 will be also updated
automatically.

5.5.7 RULES

EXPRESS supports the definition of a variety of rules that can implement many kinds of NIAM
constraints, as well as other semantic conditions of importance to product modeling. It provides a
variety of structures for embedding these rules. The derived attributes presented earlier describe
one such structure. Domain rules describe another. They allow definition of restrictions on
allowed values or combination of values in the attributes of an Entity. Domain rules are specified
using a WHERE clause within an Entity specification.

ENTITY vector;

a, b, ¢ : REAL;
WHERE

lengthl : a**2 + b**2 + ¢c**2 = 1.0;
END_ENTITY;

The domain rule 1engthl is an integrity constraint of type LOGICAL (all WHERE clauses are
of type LOGICAL). When accessed, it evaluates the expression and returns one of the values:
TRUE, FALSE or UNKNOWN. UNKNOWN is used when some attributes are missing. If lengthl
is not TRUE, then an instance of vector does not conform to this specification.
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In order to define complex rules, EXPRESS incorporates a fairly complete set of system
functions. These include

ABS - absolute value LOG10 - base 10 log of value
ACOS - arc cosine LOG2 - base 2 log of number
ASIN - arc sine LOINDEX - actual lower bound of values
ATAN - arc tangent NVL - converts NULL to given
BLENGTH - number of bits in a binary value
Ccos - cosine OoDD - TRUE if value is odd
EXISTS - TRUE if value exists ROLESOF - returns set of strings of
EXP - e to power of value references to value
FORMAT - string of a number SIN - sine
HIBOUND - declared upper bound SIZEOF - no elements in aggregation
of constructor SQRT - square root of value
HIINDEX - actual number of values TAN - tangent of value
LENGTH - number characters instring TYPEOF - set of strings of all types of a
LOBOUND - declared lower bound value
of constructor ‘ USEDIN - setof strings used in given
LIKE - matches substring of string Role
LOG - natural log of number VALUES - numerical value of string

As can be seen, many of these are trigonometric and algebraic functions. The bounds checking,
SIZEOF, USEDIN and other functions are provided to facilitate querying a product model. These
can be used with the computational part of EXPRESS (Section 5.5.9) to define more complex and
domain-specific functions for use in rules within a schema. General functions can be declared and
used in defining DERIVE clauses or WHERE rules. An example is shown below. It computes the
distance between two 3D points, where the points are as they were defined earlier.

FUNCTION distance {(pl,p2 : point) : real;
(* computes the Euclidean distance between two points *)
LOCAL dist : REAL;
dist := SORT((p2.x - pl.x)**2 + (p2.y - pl.y)**2 +
(p2.2z - pl.z)**2);
RETURN (dist);
END_FUNCTION;

Access to a particular value is gained through a path accessed by a pathname. Pathnames are a
sequence of attribute names connected by periods (.) traversing through an instance model. In the
above example, p1 and p2 are the local names of parameters of type point within the function.
Point has attributes x, y and z which are sequentially accessed from p1 and p2.

In writing a function to be embedded in a WHERE clause, there is no parameter that refers to the
current instance. SELF is a primitive function that serves this purpose. It may be used in Entity
and Type declaration or instance initializations. For example, the variables available in
homogeneous_point above are

SELF\point.x;
SELF\point.y;
SELF\point.z;
w;

In the above pathnames, SELF refers to the current Entity. The \point refers to an Entity
inherited into the current Entity. These pathnames are used to access these attributes from within
homogeneous_point.



ISO-STEP 153

A well-known issue in object-oriented systems is the resolution of duplicate names inherited from
multiple disjoint SUPERTYPEs. In EXPRESS, these conflicts are resolved by defining the
pathname from which the attribute name came. Thus, if an Entity window is a SUBTYPE of
both a wall_opening Entity with a location attribute, and a 1ight_source Entity
with 2 1ocation attribute, each would be accessed using the following:

SELF\light_source.location
SELF\wall_opening.location

5.5.8 RELATIONS

Like object-oriented languages, EXPRESS does not have a structure for defining relations. Like
most languages, they must be defined using attributes. On the other hand, the semantics defined in
NIAM and other data modeling languages need to have a well-defined implementation.

5.5.8.1 Defining the Arity of Relations

Because of the prevalence of arity constraints in NIAM and other data modeling languages,
EXPRESS had to have effective ways of representing them. While most languages allow a user to
define a relation in one direction (either one-to-one or one-to-many), few allow many-to-many.
That is, in the definition of a polygon made up of a list of edges, it is straightforward to define
relations from polygon to edges. Using the 1ine Entity defined earlier,

ENTITY polygon;
edges : LIST [3 : ?] of line;
WHERE
2_connected : (* check that the line’s endpoints
are all two-connected *)
END_ENTITY;

Here, the polygon may point to three or more lines, indicating a three-to-many relation. This
shows how a constraint on the arity can be defined in EXPRESS. The earlier 1ine definition
incorporates a two-to-many relation, where each 1ine referenced two instances of point1, and
each point1l could reference any number of 1ines. The WHERE statement checks that line
endpoints connect to form a closed polygon. In many-to-many relations, an INVERSE clause is
required so both sides of the many-to-many relation can be defined. In the example, a many-to-
many relation occurs if a line may be part of multiple polygons, as is commonly the case in
boundary representation solids.

EXPRESS solves the many-to-many problem by using the INVERSE relation. We redefine the
previous 1ine example and polygon above:

ENTITY line;

point_ref : ARRAY[1:2]) OF pointl;
INVERSE

loops : SET ([0:2] OF polygon FOR edges;
END_ENTITY;

ENTITY polygon;
edges : LIST [3:?] OF lines;
WHERE
2_connected : (* check that the line’s endpoints
are all two-connected *)
END_ENTITY;
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The loops INVERSE attribute identifies a constrained SET of references, allowing a line to be
composed into zero, one or two polygons. The polygon Entity specifies that it must have at
Jeast three lines within it. Thus this relation is many-to-many. In general, many-to-many relations
are defined using the inverse clause, with both attributes in the inverse relation being constructors.

5.5.8.2 Supertype Constraints

In the general case, when SUBTYPEs are defined from a SUPERTYPE, relations may exist among
the subtypes. A person, for example, may be specialized into male and female. It is not
usually possible for an instance of person to be both of these types since the two categories are
disjoint. On the other hand, a person may also be specialized into a2 parent and child, such
that an instance may be both a parent and child. Supertype constraints allow the definition
of rules on instances restricting their multi-type membership. These constraints apply to instances
that are categorized as being of one or more SUBTYPES of a SUPERTYPE.

EXPRESS provides constraints for the SUBTYPE clause to make these different cases explicit
(the EXPRESS documentation calls them both constraints and operators). They are as follows:
ONEOF—defines that the set of SUBTYPESs are mutually exclusive. An instance may be of
only one SUBTYPE (as in the male and female subtypes).
AND—used to compose both operands, by logical conjunction; an instance may be of both or
all SUBTYPEs.
ANDOR—defines that there is no rule and that an instance may belong to any subset of the
SUBTYPEs. If no constraint is specified, ANDOR is assumed as the default. (This is in
contrast to other object-oriented languages where ONEOF is the only option.)
These subtype constraints can be useful in product modeling because they allow definition of the
different combinations in which Entities may be classified. Examples of ONEOF are spousal
relations (husband, wife) and the types of materials used in construction (timber, steel, concrete).
Examples of ANDOR might be type of mechanical equipment, where a set may be any mixture of
electrical, piping, or air-handling. AND is used only in cases where there are multiple
classifications of some high-level Entity type. An example of AND use follows:

ENTITY mechanical_part
SUPERTYPE OF (AND (power_part,handling part));

END_ENTITY;

ENTITY power_part
SUPERTYPE OF (ONEOF(fluid_powered,electrical_powered,powerless) )

END_ENTITY;

ENTITY handling_part;
SUPERTYPE OF (ONEOF(air_handling, 1iquid_handling,communication) );

END_ENTITY;

In the above type structure, a mechanical_part always includes a power_part and a
handling_part. This is a powerful feature, especially useful in product modeling
classification. However, there is no direct implementation in existing programming languages,
and developers implementing STEP interfaces must develop their own conventions for dealing
with it.
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5.5.8.3 Abstract Supertypes

A semantic constraint that can be expressed in NIAM and other data modeling languages is that a
supertype can only consist of the members of its subtypes. That is, it can have no members of its
own. In Figure 5.10, the TOTAL constraint expresses the fact that all pass-thru instances must
be of type flexible-pass-thru or rigid-pass-thru. In the example of mechanical
parts above, we may wish to require that all mechanical_parts have both a power_part and a
handling_part,e.g.,

ENTITY mechanical_part )
ABSTRACT SUPERTYPE OF (AND (power_part,handling_part));

FUNCTION distance(pl, p2 : point) : REAL;
(* compute the distance between two points *)
END_FUNCTION;

FUNCTION normal(pl, p2, p3 : point) : vector;
(* compute normal of a plane given three points on the plane *)
END_FUNCTION;

ENTITY circle;
Center : point;
Radius : REAL;

Axis : vector;
DERIVE

Area : REAL := pi * radius ** 2;
END_ENTITY

ENTITY circle_by points;
SUBTYPE OF (circle);
pl, p2, p3 : point;

DERIVE
Radius : REAL := distance( pl, SELF\circle.center);
axis : vector := normal(pl, p2, pP3 );
WHERE
Not_coincident : (pl <> p2) AND (p2 <> p3) AND (p3 <> pl);
Is_circle : (distance(p2,SELF\circle.center) = radius) AND

(distance (p3, SLEF\circle.center) = radius);
END_ENTITY;

Figure 5.21: Example of code showing EXPRESS syntax as an algorithmic language.

5.5.9 PROGRAMMING CONSTRUCTS

EXPRESS incorporates a large set of language constructs to define the expressions for
FUNCTIONs, WHERE clauses and DERIVE clauses. These are similar to those provided in
standard programming languages, such as C. FUNCTIONs are used as repeatedly called routines
in the definition of complex derivations or rules.

The whole syntax for EXPRESS is not provided here, but an example of a small program is

shown in Figure 5.21 to indicate the style of the language. In addition, EXPRESS incorporates

many useful functions that facilitate the easy definition of such rules presented in Section 5.5.7.
Of particular significance are

In: an infix operator that tests membership in some aggregate. The right-

hand operand is checked to determine if the left-hand operand is a
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member. Returns TRUE if it is a member, FALSE if it is not and NULL
if either operand is missing

Like: a string matching operator that returns TRUE if the left operand is a
substring of the right operand, FALSE if it is not and NULL if an
operand is missing

Typeof: a function that returns a set of strings of all the types of which the
parameter element instance is a member
UsedIn: a function that takes as an argument an Entity and a string containing

an attribute name and returns a set of all the Entity instances that refer
to the attribute

Figure 5.21 shows the outline definition of two FUNCTIONSs (not fully defined) that are used to
derive parameters from a circle that is defined by three points: a center and a begin- and end-
point. From these, the WHERE clause derives radius and axis and checks that the points are
not degenerate. EXPRESS also incorporates a query language, allowing data carried within an
EXPRESS schema to be interrogated, compared and extracted.

5,5.10 COMBINING MODELS

EXPRESS facilitates the definition of abstract constructs that can be “imported” into other models
for use. The two forms of importation are the USE FROM statement, which identifies a schema
from which a list of Entities is to be imported into the current schema, and the REFERENCE
FROM statement, which is used to reference Entities for use as attributes in the current schema.

USE FROM geometric_model
(faceted_Brep,shell_based_wireframe) ;

REFERENCE FROM geometric model
(manifold_surface, AISC_steel_spec)

The difference between these two forms of importation is that USE FROM allows subtypes and all
other types to use the imported elements. This is done in a manner similar to the facilities in most
programming languages, such as the include statement in C and C++. The REFERENCE FROM
statement only allows use of the elements as attributes.

5.5.11 EXAMPLE

Figure 5.22 reproduces a standard example from the EXPRESS manual that shows a simple
schema for defining a genealogical tree. It first defines three types: an array called date, a
function for computing a person’s age called years, and an enumerated attribute called
hair_type. These are used to define person that has three variables for defining their name,
a birthdate, a hair_color attribute and a relation to a set of the person's children. Person is
subtyped into husband and wife. The recursive attribute children allows a person to
refer to other persons that are their children. The INVERSE relation of children is named
parents, so that any relation of a person to their children also carries the INVERSE relation of
child to parent. This example utilizes the simpler concepts of EXPRESS.

5.5.12 BUILDING MODEL EXAMPLES

The STEP generic resources are available to represent standard geometric Entities. They will be
reviewed in more detail in the next chapter, where we will again look at the arc and bounded
plane examples.

This section presents the core wall example that was initially defined in Section 3.2. It is
presented incrementally, so that various aspects of its definition can be discussed as we proceed. It
is useful to compare this EXPRESS model with the roughly parallel NIAM model presented in
Section 5.4.2, which has similar intended semantics. Since EXPRESS does not execute WHERE
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SCHEMA example;

TYPE date = ARRAY [1:3] OF INTEGER;
END_TYPE;

FUNCTION years{(d : date) : INTEGER;
(* computes an age to the current date from d *)

END_FUNCTION;

TYPE hair_ type = ENUMERATION OF
(brown,
black,
blonde,
redhead,
gray,
white,
bald) ;
END_TYPE;

ENTITY person v
SUPERTYPE OF (ONEOF (male, female));

first_name : STRING;

last_name : STRING;

nickname : OPTIONAL STRING;

hair_color : hair_type;

birth_date : date;

children : SET [0 : ?] OF person;
DERIVE

age : INTEGER := years(birth_date);
INVERSE

parents : SET [0 : 2] OF person FOR children;
END_ENTITY;

ENTITY female
SUBTYPE OF (person):;
husband : OPTIONAL male;
maiden_name : OPTIONAL STRING;

WHERE

WI : (exists(maiden_name) AND EXISTS (husband)} OR
NOT EXISTS (maiden_name) ;

END_ENTITY;

ENTITY male

SUBTYPE OF (person);

wife : OPTIONAL female;
END_ENTITY;

END_SCHEMA;

Figure 5.22: The standard example of an EXPRESS model.

157

clauses and DERIVE computations, the EXPRESS model below conveys these features in words

rather than pseudo-code.

SCHEMA core_wall_model;

USE FROM geometry (Brep,drawing,polyline,polygon);

USE FROM plumbing (plumb_entity);

USE FROM electrical (elect_entity);

USE FROM hvac (hvac_entity);

USE FROM floor_ceilings(floor_entity, ceiling_entity);
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(* type definitions *)
TYPE resB = REAL ; (* resistance measured as reciprocal of
C, measured in BTU/sq.ft.*)

END_TYPE;

TYPE area_in = REAL; -- area in square inches
END_TYPE;

TYPE distin = REAL; -- linear distance unit in inches
END_TYPE;

TYPE UB = REAL; (*coefficient of transmission in
BTU/hr/sqg.ft. *)
END_TYPE;

TYPE boundary =
SELECT (wall, floor_entity,ceiling_entity):
END_TYPE;

This model externally references various geometric models that are not included here, using the
USE FROM syntax. It also refers to external mechanical systems elements that use the wall as a
chase area. To deal with boundaries, it also uses floor and ceiling Entities. Some types are defined
for some general measurements that in practice also have standard definitions within Part 41.
However, we define them here explicitly and assume they will be resolved with supporting
generic resources at a later “interpretation” stage of model development. A SELECT type is also
defined, to group the different Entities that might bound a wall.

ENTITY wall
SUPERTYPE OF (ONEOF ( core_wall );

geom : wall_geom;

opening : OPTIONAL SET [0:?] OF o_object;
abuts : LIST [0:?] OF boundary:

DERIVE hs : UB := "derive hs for wall from hs

of segments and openings”;
WHERE 3D_shape_consistent :="Brep consistent with
segments and openings";
INVERSE
wall_abutted_by : LIST(0:?] OF boundary FOR
wall_abutted_by:
END_ENTITY;

TYPE wall_geom (ABSTRACT SUPERTYPE);

3D_shape : Brep;

flr _plan : drawing;

elevation : drawing;

WHERE drawing_consistent :="plan and elevation are

consistent with Brep";
END_TYPE;

A generalized concept of wall is defined, which has a reference to a single ABSTRACT
wall_geometry that includes three generic geometric views, for plan, elevation and solid
model. The wall references a LIST of o_objects—openings in the wall. The wall has a
DERIVED attribute for energy flow that is defined at this level so it can be applied consistently to
any wall subtype. Wall also has references to a select type called boundary that defines
the different Entities that bound this wall. It carries an INVERSE attribute backreferencing the
other boundary Entities that may abut this one. Wall is then specialized into core_wall, as
one general type of wall construction. Notice that a designed wall may be defined as wall or as
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core_wall. It may be defined first as wall, prior to determining its construction. Later, it may
be redefined as a core_wall, when its construction type is decided.

ENTITY o_object
ABSTRACT SUPERTYPE OF (ONEOF (filled_hole,hole));

region : polygon;
r-value : resB;
INVERSE
part_of : wall FOR opening;
DERIVE area : area_in: area_in := "compute area of polygon";
hs : UB := "derive hs from r of filler and area";
END_ENTITY;

ENTITY filled_hole
SUBTYPE OF o_object
ABSTRACT SUPERTYPE OF (ONEOF (door,window));

solid : Brep;

pattern : symbol;

r-value : resB;
END_ENTITY;

ENTITY door;
END_ENTITY;

ENTITY window;
END_ENTITY;

ENTITY hole;
END_ENTITY;

The o_object is a generalized opening referenced by the supertype wall. It is ABSTRACT,
meaning that only instances of its subtypes are allowed and ONEOF, which requires an instance to
be of only one of the subtypes. It has an INVERSE attribute allowing any opening to reference the
wall it is in. The filled_hole is an ABSTRACT subtype of the o_object; it includes
geometric definitions of the filler and references the type of filler. It also carries a thermal
resistance. Door and window are defined toward the bottom. Though they add no new attributes
of their own, they inherit all the attributes and relations from opening and filled_hole,
including the INVERSE attribute and thermal properties.

ENTITY core_wall;

pass_thru : OPTIONAL LIST [0:?] OF p_object;
segment : SET [1:?] OF s_object;
WHERE
routing = " pass_thrus only intersect core_walls";
disjoint = "all openings and segments are pairwise
spatially disjoint";
coverage = "all openings and segments cover the wall
elevation®;
END_TYPE;

The core_wall is a subtype of wall. Thus it receives all the references to o_objects and
geometry and references the bounding Entities. Core_wall references pass_thrus and
segments. It has three constraints defined for it, restricting the possible combinations of data it
can carry. They define the legal geometric definitions of a wall and constrain where pass-thrus
may go.

ENTITY p_object
pass_thru_entities : LIST OF pass_thru;
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center : polyline;
3D_shape : Brep;
END_ENTITY;

The p_object is a generalized Entity that references other systems passing through the wall and
represents their geometry in a way needed by the wall definition. It represents a single
pass_thru and carries apolyline and a Brep representation of it.

ENTITY s_object;

core : core_type;

insul : OPTIONAL insulation;
surfl : OPTIONAL LIST OF surface;
surf2 . OPTIONAL LIST OF surface;
region : polygon;

INVERSE part_of : core_wall FOR segment;

DERIVE area . area_in := "compute area of polygon";
offsetl . distin := "derive thickness to side 1";
offset2 . distin := "derive thickness to side 2";
hs . UB := "derive the thermal flows for this

segment from core, insulation and surface Rs";
END_ENTITY;

The s_object is a central construct. It defines the construction of a wall segment as a core
(with optional insulation) with a sequence of surfaces on both sides. It carries an area and
two offsets derived by summing the core offsets and surfaces on each side. It includes the
polygonal region it occupies in the core_wall elevation. It computes an area and intermediate
resistance for this region of the core_wall. The types of core construction and surfaces are not
detailed; they would be subtypes of core_type and s_object, respectively.

ENTITY insulation;

thickness : distin;
r_value : resB;
INVERSE part_of : s_object FOR insul;
END_ENTITY;
ENTITY core_type;
r : resB;
offset : LIST [1:2] OF distin;
3D_shape : OPTIONAL Brep;
INVERSE part_of : s_object FOR core;

END_ENTITY;

The insulation is defined by a thickness and its resistance. It has an INVERSE attribute
to the segment it is in. The core_type has a resistance, two offsets and an OPTIONAL
Brep solid model defining it. It and other parts of the segment have been defined with INVERSE
attributes, so that they access the wall instances to which they belong.

ENTITY surface;
r_value : resB;
thickness : distin;
INVERSE part_of_1 : s_object FOR surfl;
INVERSE part_of_2 : s_object FOR surf2;
END_ENTITY;

END_SCHEMA;
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The surface carries a thickness and r_value, with INVERSE attributes back to the
s_object itis in. It must carry two such attributes because of the two slightly different Roles it

may play.

This EXPRESS model is a direct translation of the semantics of the core wall defined in Chapter
Three and elaborated in NIAM in Section 5.4.1. It has not been simplified, generalized, or
otherwise “tuned” for long-term use. These issues are taken up in Chapter Six.

5.5.13 SUMMARY OF EXPRESS

From the core wall example, we can see that EXPRESS is a rich language generally capable of
representing a broad range of semantics associated with buildings or other products. It allows
definition of special purpose types, Entities and relations needed for some area of product
modeling. It supports sophisticated conceptual definitions of Entity supertype-subtype lattices
whose semantics can be defined through SUBTYPE constraints. It also allows definition of
complex attributes, including those that are functions of other attributes, making their derivation
explicit. It allows definition of complex rules that specify the conditions required for a model to
be consistent. It supports specification of two-way relations, allowing bi-directional access
through the model structure and guaranteeing that these relations are consistent, using INVERSE
attributes.

Some limitations also can be identified. Like most other object-modeling languages, EXPRESS
does not distinguish relations between an Entity and its attributes and relations with other Entities.
There is nothing equivalent to the TOTAL constraint in NIAM, for identifying dependencies
regarding potential deletions. This limitation points out the fact that EXPRESS models are static;
there are no mechanisms to add or delete parts of a definition. Also, there is nothing equivalent to
the UNIQUENESS constraint on sets of attributes which supports queries. There are numerous
other differences. In general, however, EXPRESS is able to depict almost all of the semantic
conditions defined for the core wall model in Chapter Three.

Given this introduction to EXPRESS, we turn to EXPRESS-G, which is the graphical subset of
EXPRESS. We assess both in more detail at the end of this chapter.

5.6 EXPRESS-G

An integral part of the EXPRESS language definition is a graphical notation called EXPRESS-G.
While it was defined as a means to depict EXRESS models, it is recognized as a STEP description
method in its own right and is becoming frequently used for defining Application Reference
Models.

EXPRESS-G allows easy definition of a major subset of the EXPRESS language. It defines a
schema in terms of attributes, types, Entities of various type, and also references elements outside
the current schema. It provides means to define relations, including Subtype, Derived and Inverse
relations. Constrained elements can be identified, but the constraint rule or clause is not specified
graphically. There are several slightly different flavors of EXPRESS-G. Figure 5.23 shows the
graphical notation corresponding to one of these flavors. All Types but the Basic Types (Real,
Integer, Boolean, String, Logical) are represented as a box of dashed lines. Basic Types are solid.
Bars on the right or left denote different types. A box with an enclosed circle indicates a reference
to a Type of Entity within another schema or diagram. Relations are represented by edges
connecting boxes; Supertype/Subtype relations are shown with thick lines, while other relations
are shown with thin lines.
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Figure 5.23: The notation of EXPRESS-G. Names of elements are within angle
brackets (< >).

In this book, Subtype constraints are shown explicitly. In most other documentation, only the
ONEOF constraint is represented, using a “1” to denote it. We denote all three—ONEOF, ANDOR

or AND—placing them in parentheses. All relations have a direction denoted by a small circle
rather than an arrowhead. OPTIONAL relations are shown with dashed lines (subtype relations
cannot be optional). Relations may be qualified with an INVERT constraint or a derivation.
INVERTed relations are represented by a single line, with one attribute name shown above the line
and the other below it. The arity of relations is shown as subscripts on the relation. Constraints on
Attributes or relations are noted with an asterisk (¥).
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Figure 5.24: The EXPRESS-G representation of the hereditary model presented in
EXPRESS in Figure 5.22.

By implementing EXPRESS-G within a graphical drag-and-drop environment, it becomes
possible for a user to construct diagrams that, when interpreted by the computer, can be used to
automatically generate most of an EXPRESS schema. It becomes a means to graphically define a
schema to be used for data exchange. Figure 5.24 presents the example of the EXPRESS schema
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defined textually in Figure 5.22, in EXPRESS-G. By checking this figure’s correspondence with
the earlier example, the semantics of the notation are easily studied. The graphical notation
facilitates understanding the overall structure of an EXPRESS model.
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Figure 5.25: The core wall example defined in EXPRESS-G.

Figure 5.25 shows the larger example of the core wall that was developed in the previous section.
Presenting an EXPRESS model in this way facilitates its understanding, and allows tracing and
debugging. For most people, it is much easier to understand the graphic example rather than its
textual version. Again, comparison of the EXPRESS model in Section 5.5.12 with the EXPRESS-
G model indicates the semantic expressiveness of EXPRESS-G in relation to EXPRESS.

Once a model has been defined, it must be validated. That is, is the model complete, in the sense
that there are no dangling definitions that refer to some Entity or type that is not defined? Are the
Entity and attribute definitions that refer to external schemas correct in how the external schemas
are referenced? Is the syntax of the model correct? These issues are aided by a variety of software
tools.
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A small software development community has grown up around the data exchange field.
Originally, developers provided IGES translators and IGES file conformance testing software.
Software firms, most of which grew out of university or industrial research labs, support the STEP
enterprise with a variety of tools. A list of some of the vendors is provided in the Appendix.

The tools include

e EXPRESS compilers that check the syntactic correctness of an EXPRESS model

e cross-references tables that show where each schema, type and Entity is defined and where
they are used

e tools that support the automatic generation of EXPRESS-G diagrams with associated
browsers, supporting conceptual review

e tools that check if two EXPRESS models are the same or if they differ and how, so that
different versions of an evolving model can be carefully compared

e code libraries that can access an EXPRESS schema and Read or Write data in the prescribed
format

These tools are described in the Appendix.

5.7 ARM TO AIM INTERPRETATION

The translation of a reference model (ARM) to an interpreted model (AIM) involves rationalizing
the ARM specification within the larger scope of STEP Part models. That includes determining
the appropriate use of Generic Resources in the model and coordinating the model with the
relevant Application Resources. For example, various APs developed in the AEC area should
incorporate sufficient overlap to deal with such issues as spatial conflict testing. While initially
the emphasis was on specifying ARMs in NIAM or EXPRESS-G, recently some ARMs have also
been developed in EXPRESS. In this situation, interpretation means adjusting the already
developed EXPRESS model to conform with the Integrated Resources and with the larger STEP
environment, defined in other APs.

5.8 PHYSICAL IMPLEMENTATION OF AN EXPRESS REPOSITORY

An EXPRESS schema provides a template for generating a physical implementation of a product
model. It defines a structure for storing data describing instances of a building part, assembly or a
whole building. While there has been discussion of a range of possible physical format
implementations, in practice there have been two types: a computer file that stores the data
describing some product or a database that holds the data. Both of these approaches are described
below.

The general facilities for developing physical level implementations of an EXPRESS model are
defined in STEP Part 22, Standard Data Access Interface (SDAI). Part 22 defines consistent data
storing and access mechanisms in terms of their functionality and their programming language
interfaces. The interfaces are defined as a library of methods or procedure calls—generally called
language bindings.

An EXPRESS Part model is a complex structure. One need only review an example model to
grasp its complexity. In the core wall model presented in Figure 5.25, for example, what are all
the attributes of a window? Looking at window alone, there are none, but in fact, a significant set
has been inherited into the window through supertypes. Any interpretation of an EXPRESS model
requires scanning up and down the subtype-supertype lattice to put together the structure of an
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Entity. In addition, a model utilizes a variety of shared library integrated resources that are in
different schemas, requiring going back and forth among multiple schemas.

In order to facilitate easier interpretation of EXPRESS models, a preliminary processing step is to

transform the EXPRESS schema into a more easily read dictionary. The dictionary is a compiled
form of an EXPRESS model. The dictionary is itself defined in EXPRESS. To give an idea of the
dictionary’s structure, the Entity and Attribute specifications are given below.

ENTITY entity definition
SUBTYPE OF (named_type):;

supertypes : LIST OF UNIQUE entity_definition;
attributes : LIST OF UNIQUE attribute;
uniqueness_rules : SET OF uniqueness_rule;
where_rules : SET OF where_rule;
complex : BOOLEAN;
instantiable : BOOLEAN;
independent : BOOLEAN;
INVERSE
parent_schema : schema_definition for entities;
UNIQUE
URl: name, parent_schema;
END_ENTITY;

ENTITY attribute
ABSTRACT SUPERTYPE OF
(ONE OF (derived_attribute, explicit_attribute,
inverse_attribute));

name : STRING;

domain : base_type;
INVERSE

Parent_entity : entity_definition FOR attributes;
UNIQUE

URl: name, parent_entity;
END_ENTITY;

A structure in this format is defined for each Entity in a schema. For an Entity, the structure is
fairly clear. The @TY\P carries the name of the Entity. The supertype carries all the
supertypes of this Entity class. The attributes carries a list of attributes, as defined below it.
Unigueness_rules defines a set of constraints that apply to the Entity. Where_rules is a
set of domain rules for the Entity. Complex indicates whether the Entity is the result of an
ANDOR or AND subtype constraint. If TRUE, the Entity is the result of mapping multiple inherited
Entities, else it is defined explicitly. Instantiable indicates whether Entity is an ABSTRACT
SUPERTYPE. Independent indicates whether the Entity is independently instantiable or
whether it relies on a REFERENCE clause. Parent_schema references the schema in which
this one is declared. UR1 checks that the name_type is unique within the schema.

The attribute is a supertype of derived_attribute, explicit_attribute, or
inverse_attribute. It carries a name and a domain. An inverse relation references the
Entities that reference it. Its name also must be unique. Each of the EXPRESS constructs, in-
cluding the schema, all types, all rules, constructor types of set, 1ist, bag and array
are specified in a manner similar to the Entity and attribute above.

Any approach to storing EXPRESS-formatted data must define the equivalency between each
construct in EXPRESS and the format in the medium being used. For example, how is an attribute
that uses a set constructor to be stored, or how is an INVERSE relation to be stored? These
equivalencies can be represented in a mapping table, as described in Section 5.3. An example of a
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mapping table is shown in Figure 5.28. EXPRESS vendors have defined and implemented func-
tions that realize such a mapping table for each repository medium to which they have developed

interfaces.
building
application

/\m/

EXPRESS
1 model

C++ functions to
¥ create, read and
write STEP entities
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111100110000101010
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Figure 5.26: The early binding approach to developing a STEP interface.

There are two general strategies for implementing an EXPRESS data repository. These are called
early-binding and late-binding strategies. In an early binding strategy, shown diagrammatically in
Figure 5.26, each Entity in the EXPRESS schema for some application protocol is parsed and
defined as a corresponding structure in a programming language such as C or C++. For example,
an Entity made up of three attributes, a list and a set will be parsed and defined as a C struct or
C++ object that carries three fields for attributes, a structure for a list and another structure for a
set. These structures are created as a preprocessor to compilation, allowing code to be written that
both reads or writes the Entities to and from the application and also to and from the storage
medium. The read and write code related to the application entity instances is custom to the appli-
cation. The read and write to the storage medium is provided by language bindings that read or
write an Entity instance to or from the storage medium. Since the structures are defined and com-
piled with integrated reading and writing, they operate quite efficiently. .

In the late-binding strategy, shown diagrammatically in Figure 5.27, the EXPRESS Entities and
relations making up a model are identified during the execution of the exchange process. Instead
of compiling the elements of the schema, the elements are identified and looked up in the data
dictionary for each read and write. For example, using the early-binding example above, the late-
binding interface would involve a function call to create an Entity, followed by three function
calls to make three attributes, followed by a call to create a list structure, followed by a call to cre-
ate a set structure. This sequence must be executed for each instance encountered. The advantage
of late binding is that the functions used to read or write to/from a format can be defined once and
used for any model. The model Entities can be easily revised. With early binding, custom
functions must be written for each model Entity.

A particular implementation issue is the supertype constraints on inheritance. These identify a
range of Entity types that may be defined as combinations of subtypes—using ONEOF, ANDOR,
and AND. At the implementation level, each possible combination of subtypes is explicitly
defined. For example, if a supertype "A" has subtypes "ANDOR(B, C, D)", then the following
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types are allowed: "A+B", "A+C", "A+D", "A+B+C", "A+B+D", "A+C+D", "A+B+C+D". "A" is
inherited into all subtypes and all combinations of "B", "C" and "D" must be generated. There is
no way to automatically generate these types. They must be defined by a programmer.

building /\/‘\—’
\ __application
EXPRESS ‘ C or C++ .
model _data
functions that read a 110000001101010101
dictionary definition, oA R
expanded ttr:en create, write, rea > lotolgtotio0t0ioto
§ EXPRESS the EXPRESS entity, a
: model gconstruct at a time g?f%?g?c}%:&?:g:
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Figure 5.27: The structure of a late binding SDAI implementation.

5.8.1 TEXT FILE IMPLEMENTATION

The most prevalent implementation—and the one for which most tools have been developed—is
using a text file. A file-based repository may be developed using either early- or late-binding
strategies. Part 21 of the STEP standard fully specifies how an instance in any EXPRESS format
should be organized in a physical file. Thus it defines how a dataset of Entity instances in
EXPRESS format should be laid out. It uses a free format not based on columns and specifies a
file composed of two sections, a header section and a data section.

The header section has three parts: (1) a file description part that provides an informal description
of the file contents; (2) file registration information consisting of the filename, timestamp, author,
organization, processor that generated the data, release status, and related information; and (3) the
file schema format, defined for the EXPRESS AIM used, and any Application Interpreted Con-
structs used with the AIM. The second section consists of Entity occurrences, formatted according
to a syntax uniquely mapping the EXPRESS schema into locations within the dataset.

Comments may be inserted into the physical file data section, delineated by /* and */. The file
may include print format statements and "white-space characters" for enhanced readability. These
are ignored when the file is parsed for translation.

Each construct and construct composition used in EXPRESS can be defined to specify a format
for the EXPRESS schema on a file. Only some of the EXPRESS constructs are needed, and others
are mapped onto a common format. The table in Figure 5.28 defines how each construct is
mapped. The right side of the table shows the formats used in the physical file.

These equivalencies are built into functions that are then embedded into application programs that
READ, WRITE, QUERY and CHECK the data stored on a file, using the conversions shown. The
CHECK functions are used to validate the data carried within a model. Typical CHECK functions
include validating that the atiributes of an instance are of the correct types, validating that the
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instance carries values for all atiributes that are not OPTIONAL, and validating that there is an
appropriate pairing of INVERSE attributes.

EXPRESS CONSTRUCT PHYSICAL FILE FORMAT
schema ---ignore---
array list

bag list

list List

set list

select ---ignore---
Entity Entity
Entity as attribute Entity name
Entity as supertype (no instance) ---ignore---
Entity as supertype Entity
integer integer

real real

string string
binary binary
Boolean enumeration
logical enumeration
enumeration enumeration
derived attribute ---ignore---
inverse ---ignore---
procedure ---ignore---
function ---ignore---
constant ---ignore---
remark ---ignore---
rule ---ignore---
where rule ---ignore---

Figure 5.28: The mapping table for EXPRESS constructs mapped to physical file constructs.

File level implementations are sometimes called clear text encoding. They are appropriate for
writing out a model from one application program and reading all or part of it into another appli-
cation program. Modifications of the data within the same file are not possible, because of the
lack of a way to adjust the file's storage allocation.

Recently, a new non-standard text-encoding scheme has been developed using SGML, the Web-
based data exchange language.

5.8.2 DATABASE IMPLEMENTATION

There have been a few database implementations that support storing and retrieving data in an
EXPRESS-consistent format. Various implementations are possible. Most rely on an encoding
and database representation of each EXPRESS language element as defined in the EXPRESS
dictionary. These can be concatenated into high-level database calls to Create, Write or Read
schema Entity instances.
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Databases provide a higher level of functionality to the physical implementation of an EXPRESS

model, which is reflected in the SDAI interface facilities. These include

o  Session operations: start event recording, stop event recording, open session, close session

o Transaction facilities: start transaction in read-write access, start transaction in read-only
access, promote to read-write access (from read-only access), commit, abort

e Model access and management: open repository, close repository, rename model

Database interface libraries have been developed and are marketed for a variety of commercial
databases, including the Oracle relational database, and the ObjectStore, Versant, and ROSE
object-oriented databases.

5.9 CONFORMANCE TESTING

Conformance testing is the evaluation of an implementation to determine whether it conforms to
the standard. It begins with the development of a detailed set of tests and test purposes, while the
AIM is still under development. Each implementation of an AP is required to have associated
conformance criteria that can be used to validate any implementation of the AP. The test criteria
include the options and variations that are to be exercised during conformance testing of an AP
implementation.

In general, conformance requires satisfaction of the following criteria:

1. The information requirements of the ARM are preserved in the implementation. This includes
all combinations of Entities and their attributes.

2. All AIM Entities, types and associated constraints are supported. Treatment of options shali
conform to the AIM.

3. Only the constructs defined in the AIM are recognized and included in their implementation.

The implementation must also specify whether the the AP is required to be complete or whether
subsets are allowed. If subsets are allowed, they must be defined.

These criteria are used to create a test suite for any implementation of the AP. This test suite is to
allow testing laboratories to define and apply executable tests during conformance evaluation. The
emphasis is on making the tests auditable and easily replicated. All controls are provided and
standardized by STEP (with the exception of PIXIT, for which guidance in its definition is given),
thus assuring regularity to the highest standards possible.

Guidelines for development of test suites include

1. Identify all Entities that can exist in the ARM without being a child of another Entity; these
become test Entities.

2. Identify the correspondence between ARM and AIM Entities and verify that the requirements
of all ARM Entities are satisfied. _

3. If attributes have enumerated values, there should be tests for each possible value.

4. If attributes are of SELECT type, then each of the possible types allowed should be checked
in the tests.

5. If an attribute if OPTIONAL, then the test suite should include cases that both include and
omit the optional attribute.

6. Test cases should cover all combinations of types allowed by the supertype constraints.

There is a notion that an AP may be divided into levels, where a level is a subset of the overall
AP. This provides the option to define partial implementations of the complete protocol. Each
conformance level can be considered a miniature AP. This allows each AP to identify subsets of
the protocol that can be considered “complete” for some purposes.
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5.10 THE EVOLUTION OF STEP

ISO-STEP is one of the largest standards efforts ever undertaken, encompassing many areas of
industry with worldwide scope. This is only practical if many different STEP activities are un-
dertaken in parallel. A majority of the Parts identified in Figure 5.3 have on-going committees,
which are either in the initial process of generating a version 1.0 AP, or are revising an existing
one.

Across such endeavors, many aspects of STEP are evolving in parallel. At the base facilities level,
the procedures involved in developing and gaining approval of APs are being refined to make
them simpler wherever possible. At the same time, improvements in conformance testing are
being sought. With over five years of practical experience using EXPRESS and EXPRESS-G,
there are plans to extend and revise it to respond to known shortcomings. In this respect, STEP is
different from other standards efforts. For example, in the early days of computing, there was no
agreement on the coding scheme for characters. Specifically, there was the EBCDIC character
coding used by IBM competing with the now standard ASCII coding. Well-developed working
solutions existed and the standards issue was which alternative to select. All character-based de-
vices now rely on ASCII coding as a fixed non-changing standard. STEP is not a fixed, non-
changing standard. In this regard, STEP is more like a very large, related set of development
efforts.

The ISO 10303 activities making up the STEP enterprise are largely funded through support of
various interested organizations. Some are private, such as Boeing, General Motors, Bechtel and
the large Japanese construction firms. Others are public organizations, such as the National Insti-
tute of Standards and Technology in the US and the various European Union organizations. Many
small organizations, including civil engineers, software houses, and universities are also members.
These organizations support the activities by providing staff time to develop, review and test
proposed APs throughout their development process. Additionally, the standards are under public
control and are not proprietary. In some ways, it can be viewed as the "United Nations" of indus-
try standards.

We have covered much intellectual territory in the presentation of STEP, and there are other
aspects that we will analyze in more detail in future chapters. It is important to gain a broad pic-
ture of all these dispersed activities, because effective contributions—either within the STEP
framework or outside it—are difficult to undertake when such large but often poorly understood
efforts in data exchange are taking place.

5.11 REVIEW OF EXPRESS AND EXPRESS-G

Here, we return to consider the role and functionality of EXPRESS as a data modeling language
for product data exchange, especially for the building industry.

Product models are influenced by various interests. One intellectual goal of product modeling is
the representation of all the information used in the conceptualization, design, construction or
maintenance of a building—in other words, the creation of a semantically complete model. This
goal is one of conceptual modeling, capturing the knowledge of domain experts. People holding
this view accept that no application can yet use or manipulate all of the information they want to
represent, but they contend that eventually applications will be developed to cover these aspects.
By developing a rich model, new applications may be realized more quickly. We might call this
intention the “idealistic view". A different influence emphasizes that the goal of a product model is
to provide data exchange between applications that exist today. As new applications are devel-
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oped, the building model can be adapted to deal with them. Besides, as new applications are de-
veloped, they are likely to take unexpected forms and structures that may invalidate any effort to
anticipate them. This view takes as its goal the easy mapping of data between applications. We
might call this pull the "pragmatic view".

If we take the goal of building product modeling to be a practical one—that of facilitating the use
of software applications in support of building activities throughout the building’s lifetime—then
the goal needs to be closer to the pragmatic intention. The basic reason for data exchange methods
is to simplify the integration of computer applications into the workflow associated with a build-
ing task. Elaborating the definition of a building model increases its complexity; it may require a
number of Entities that are derived or otherwise part of the model, but that are not now used. Thus
the idealistic view adds issues and complexity to the pragmatic view of integration.

The design of EXPRESS was based mostly on pragmatic intentions. Its members are mostly prac-
tical engineers interested in exchanging what can be represented in current procedural program-
ming languages, especially object-oriented languages such as C++ and Java. It has not empha-
sized conceptual modeling concepts (such as relations) or logic programming (and inference
making). Thus it supports well the programming concepts now used to produce commercial
application software.

The one area where EXPRESS includes some notion of conceptual modeling is also the most
problematic in its application. The supertype constraints lead to both semantic errors in ARMs
and also implementation headaches. Meaningless combinations of types are sometimes inadver-
tently allowed. At other times, implementations are limited and omit types that should be allowed,
because they rely completely on the skill of a software programmer to implement the possible
types correctly.

EXPRESS has been used by different Part Committees to define and implement a large number of
complex Application Models, all listed in Figure 5.3. As these models have been developed, the
inevitable restrictions, awkward aspects and limitations of EXPRESS have become visible. One
issue is proper use of the rich semantics. For example, under what conditions should a Set
constructor be used and when should a List be used? What is good practice for defining Basic
Types in the definition of attributes? Guidelines for good practice have emerged as more models
have been developed and the strengths and limitations of the language, as demonstrated in use,
have become apparent.

Some areas of global functionality are missing. EXPRESS has been conceived as a format for
exchanging data between two applications, with an implicit focus of using a file repository. How-
ever, there are many cases where a more permanent repository is desired, allowing multiple
updates and incremental changes to the model data. Because physical implementations of
databases have not been fully addressed, some issues associated with database implementations
have not been adequately considered. How to communicate deletions and/or additions are two
specific examples. A related difficulty is that EXPRESS was conceived as a format for exchanging
data between two closely related applications using a single schema. It was not defined to support
translation between unlike applications that need to utilize different schemas. Recent efforts to add
mapping facilities, reviewed in Chapter Eleven, are aimed both at alleviating the static structure of
EXPRESS and at allowing translation between heterogeneous types of applications.

A related difficulty is that EXPRESS has been conceived as a format for exchanging data between
two applications with the same functionality as a file translator. Because physical implementations
of databases have not been fully addressed, some issues associated with this kind of
implementation have not been adequately covered. Some of the missing functionality include

e the ability of the user to select subsets of a dataset to send to an application
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e the ability to check the consistency of the model over time as updates are made

e the ability to deal with concurrency control when multiple people are updating the model at
the same time, and

e the ability to implement larger models encompassing multiple applications, such as those
needed for buildings

Many of these issues go beyond the development of a building model per se, and suggest the need

to address a broader set of issues—what might be called a modeling framework. Some of the

issues pertaining to a modeling framework are addressed in later chapters.

Another limitation of EXPRESS is that the functions, rules and other relations that are defined
within an EXPRESS model are not executable. The rules are currently used for specifying to “the
translation writers" the relations that data is supposed to reflect. Some SDAI libraries support
execution of Functions, Rules and WHERE and DERIVE clauses, but, in general, rules or clauses
must be checked by the test suites developed for translators to and from the model.

Overall, the issues raised here are detailed ones, made apparent by the success and wide use of
EXPRESS as a product model specification language. The evolving challenge will be to maintain
its simplicity and clarity, while extending its functionality.

Currently, EXPRESS-G is used as a beginning ARM language, prior to developing more detailed
models in EXPRESS. Throughout, it is used as an abstraction of EXPRESS, facilitating high-level
organizational review and comprehension (which is how it will be used in the later chapters of this
book). In these roles it works quite well. However, if EXPRESS-G is to be relied on for
developing Application Reference Models by domain experts—not software engineers—it needs
to offer better ways to express constraints and relations. These aspects of a model are not just
technical issues best handled by implementers, but a basic part of defining the domain knowledge
embedded in an application. As a result, less complete ARMs are defined. New data modeling
languages have been developed and are in widespread use in other fields. Advances are
continuously being made to NIAM and ER. Especially noteworthy in this regard is the Unified
Modeling Language (UML), which is also designed as a pragmatic, implementation-oriented
modeling language. It, however, has several semantic constructs not directly represented in
EXPRESS-G.

5.12 THE STEP SYSTEM ARCHITECTURE

Before looking at examples of STEP models using this technology, it is worthwhile to assess the
technology on its own and in terms of its own goals, as well as those we have defined earlier.

The notion of an implementation-independent standard, with alternative physical
implementations, is based on the analogy that there may be different language compilers that
allow implementation of a process on different machines. In the analogy, the semantics of the
language are used to specify a process having multiple implementations. Similarly, EXPRESS
allows the definition of a data representation that is then implemented in different media and
storage environments.

STEP has made a conscious decision to partition the UoD of all data exchange into much smaller
areas, which are oriented around clusters of software applications, using the Application Protocol
concept. However, as Application Protocols grow in number and their overlaps and interrelations
become apparent, several product areas have called for another kind of integrated resource, one
that provides a framework for how different APs should be organized. So far, such framework
models have been proposed for shipbuilding, process plants and for buildings. There are many
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issues regarding this new addition to the STEP system architecture that remain to be resolved.
Some of them will be discussed in Chapter Eight.

5.13 NOTES AND FURTHER READING

The European efforts that were initiated parallel to or after IGES include SET [1989], CAD*I
[Schlechtendahl, 1988], VDA-FS [1987] and EDIF [1985]. STEP was viewed as a pan-European
effort to subsume-these individual efforts. A review of these efforts is provided in Chapter Four of
Bloor and Owen [1995].

The ANSI-SPARC database effort heavily influenced the STEP architecture. It is presented in
Tzichritzis and Klug [1978]. The STEP system architecture and development methods are
presented in two reports by Danner and Yang [1992a, 1992b], Burkett and Yang [1995] and also
Bloor and Owen [1995]. The data modeling languages used in STEP include IDEF1x [1985] and
NIAM. An early presentation of NIAM is [Verheijen and Van Bekkum, 1982] and another is
Halpin and Nijssen [1989]. A much revised recent presentation of NIAM is Halpin [1995].
Translators that map an ARM language into EXPRESS are described in Chandhry [1992] and
Poyet {1993]. An example of a tool that translates NIAM into a relational database schema is
presented in De Troyer [1989].

The official EXPRESS document is ISO DIS10303 Part 11 [1991]. Another excellent presentation
of EXPRESS is Schenck and Wilson [1994]. Its genesis can be traced from PDDI [1984]. STEP
development methods are presented in Danner and Yang [1992a] and [1992b]. Details of the
STEP implementation procedures have been omitted. The document specifying these procedures
is ISO TC184/SC4/WG4 N34 [1992]. The Standard Data Access Interface for STEP is Part 22
(ISO/WD 10303-Part 22, 1993]. In the US, the National Institute of Standards and Technology
maintains 2 Web site for coordinating ISO-STEP activities:
http://www.nist.gov/sc4/www/stepdocs.htm

There have been many independent efforts to articulate the semantics embedded in data, for use in
computer languages and databases—as well as product models. Good surveys of the general area
are offered by Hull and King [1987] and by Peckham and Maryanski [1988]. The recent develop-
ment of Unified Modeling Language (UML) provides another important conceptual model. It is
easily accessible in Muller [1997]. Work assessing data models for use in product modeling
include Hardwick and Spooner [1987], Fulton and Yeh [1988], Shaw et al. [1989], MacKeller and
Peckham [1992], Eastman, Bond and Chase [1991], Eastman and Fereshatian [1994].

5.14 STUDY QUESTIONS

1. Select a catalog that presents information about some building product. Examples might be a
catalog for windows, doors, window awnings, exterior material panels. Focus on products
whose geometry is defined by just a few dimensions. Also, identify two or more computer
applications that might use the information in the catalog. For one line of products within the
catalog, develop your own NIAM, EXPRESS-G or EXPRESS model of the product line. The
emphasis is to represent the information about the product needed by the applications.

2. Consider the information needed to model a process in a construction schedule. Consider the
data in the context of current construction scheduling applications. A reference is Fischer,
Luiten and Aalami [1995]. Define a NIAM, EXPRESS-G or EXPRESS model of a general
construction process. What kinds of information needs should be included in all such
processes?
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Given a general construction process model, as defined in Question 2, consider the
specializations needs for particular classes of construction process. Consider, for example,
concrete pouring, painting and excavation work. Again, consider this question in the context

of current scheduling programs.

There have been few data models developed to define a space within a building. Consider
such a model from an architectural design and building code perspective. Building codes in
most countries have safety and habitability requirements for residential spaces. Two research
efforts related to such an effort are Eckholm and Fridquist [1996] and Eastman and Siabiris
[1995]. Develop a NIAM, EXPRESS-G or EXPRESS model for a general residential
building space that could be use for checking against building code requirements. Ignore the
relations of the space to its surrounding boundaries and focus on the attributes of the space
and relations between spaces.

Given the space model defined in 4 above, extend it to deal with public spaces in different
classes of building types, such as commercial buildings, auditoriums, gymnasiums and
restaurants.

Compare the constructs in the major modeling language now used in business for data
modeling, the Unified Modeling Language (UML), with the constructs in EXPRESS-G.
Identify their similarities and differences. Present an argument whether or not UML should
be added to the set of "approved” ISO-STEP ARM languages.



