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Abstract 
This document formulates a vision for advanced collaborative engineering environments (CEEs) to aid in 
the design, simulation and configuration management of complex engineering systems. Based on inputs 
from experienced Systems Engineers and technologists from various industries and government agencies, it 
identifies the current major challenges and pain points of Collaborative Engineering. Each of these 
challenges and pain points are mapped into desired capabilities of an envisioned CEE System that will 
address them. 

Next, we present a CEE methodology that embodies these capabilities.  We overview work done to date by 
GIT on the composable object (COB) knowledge representation as a basis for next-generation CEE 
systems.  This methodology leverages the multi-representation architecture (MRA) for simulation templates, 
the user-oriented SysML standard for system modeling, and standards like STEP AP233 (ISO 10303-233) 
for enhanced interoperability.  Finally, we present COB representation requirements in the context of this 
CEE methodology.  In this current project and subsequent phases we are striving to fulfill these 
requirements as we develop next-generation COB capabilities. 
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1 Document Purpose 
The purpose of this document is to formulate a vision for advanced collaborative engineering environments 
to aid in the design, simulation and configuration management of complex engineering systems. This 
document is one of the deliverables for Phase 1 of the project “Constrained Object Knowledge 
Representation: Enabling Advanced Collaborative Engineering Environments (CEEs)” (overviewed in the 
next section) as outlined in the project proposal [see EIS Lab 2005]. 

With this goal of vision formulation in mind, the authors held a series of meetings and interviews with 
experienced practicing SEs and technologists from NASA, JPL, LMCO and NIST to identify the current 
major challenges and pain points of collaborative engineering. The input from these meetings is captured in 
Section 3.1 (“CEE Challenges and Needs”). This list of challenges, as well as the authors’ combined 
experience conducting research in the area of design-analysis integration and engineering knowledge 
modeling representation, was used to compile a list of desired capabilities that a CEE System should have 
to address these pain points (Section 3.2 – “Desired Capabilities of a CEE System”). Section 4.1 presents 
an envisioned CEE system and its components that embody these capabilities. Section 4.2 (“Composable 
Objects/Multi-Representation Architecture (COB/MRA) ”) overviews the work done to date by GIT on the 
COB Representation and the requirements it shall meet to enable next-generation CEE systems.  For all the 
above lists, this document focuses more on capturing items relevant to the COB methodology rather than 
completeness. 

Figure 1 illustrates the mapping sequence followed by this document from challenges to requirements; 
starting from the CEE Challenges, mapping each challenge to CEE Desired Capabilities to address them, 
and in turn mapping these capabilities to the subsystems of GIT’s COB Platform that implement them. Also 
shown is how we map the desired capabilities to requirements specific to the COB Representation (the 
conceptual foundation of the COB Platform, described in Section 4.2.1). 
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Figure 1: Mappings between CEE Challenges, Capabilities and Requirements 

The vision outlined in this document is at a rather high-level. The idea is that, once this document captures 
what we believe to be a reasonably complete list of requirements, we will prioritize them and determine 
which are in scope for our next phases of development. We will then add enough detail to the requirements 
in scope to make them testable and to drive the development of prototypes (and, ultimately, production-
quality systems based on commercialization of these techniques). 

2 Project Background 
This document is the first deliverable of Phase 1 of the NASA Goddard-funded project “The Composable 
Object (COB) Knowledge Representation: Enabling Advanced Collaborative Engineering Environments 
(CEEs)”. This project is the result of GIT’s response to NASA’s Engineering for Complex Systems 
Collaborative Engineering Environment 2003 Call for Proposals. In this work, we are exploring the use of 
our COB methodology to support collaborative analysis and decision-making in space mission designs.  
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During this phase, we are identifying the needs and pain points of collaborative engineering that should be 
taken into consideration for the design of collaborative engineering environments, and documenting the 
software system requirements to address them. For more details please see the project web pages [EIS Lab 
2005]. 

3 Problem Overview 

3.1 CEE Challenges and Needs 
This section describes the main challenges, pain points and needs of Collaborative Engineering1 that should 
be taken into account for the development of software-based systems and tools to support advanced 
collaborative engineering environments. This list was compiled by the authors based on feedback obtained 
during a series of meetings and interviews with experienced practicing SEs at NASA and JPL as well as 
from the authors’ own experience conducting research and executing projects in the area of design-analysis 
integration and modeling of composable objects (or COBs - see Section 4.2 for an introduction). These 
challenges will provide the context for the presentation of the desired capabilities of a CEE system in the 
next section. 

• CHAL-001: Complex team dynamics: Collaborative Engineering brings together a team of 
specialists from multiple disciplines with the common objective of designing a system that meets 
the mission’s goals in the most cost-effective way. They need to share, negotiate and exchange 
information with the other members of the team, and these interactions must be carefully 
orchestrated to keep the impact of any changes they make in their subsystems to the rest of the 
system under control. 

• CHAL-002: Lack of end-user tools for collaborative Systems Engineering: although there is an 
abundance of mature and well-established software tools to aid in the design, analysis and 
simulation of individual components in the system (which is the focus of Design Engineering), 
there is a lack of end-user software tools for managing the complex interconnections of the 
components being designed to their supersystem and subsystems (the focus of Systems and 
Collaborative Engineering). The collaboration tools currently available focus on the real-time 
collaboration and information sharing amongst members of the team during a design session, 
providing functionality such as web-based real-time messaging, remote visualization of CAD 
models, and mark-up. While these tools add sharing capabilities to traditional PLM systems, they 
do not directly address the interconnection of information between models and disciplines. 

• CHAL-003: Multidisciplinary: Collaborative Engineering is multidisciplinary by nature. 
Individual team members represent different disciplines, and/or individual subsystems such as 
Propulsion, Thermal, Structures, Communications, etc. Each discipline generally uses different 
software tools, information models, graphical nomenclatures, etc., which of course makes 
communication with others difficult at best. It is not practical to solve this problem by forcing 
everyone to use the same tools and information models. Instead, a mechanism should be provided 
to share information in various formulations (including graphical views) that are understood by 
everybody, while at the same time accommodating the individual disciplines’ tools and models. 

• CHAL-004: Focus shift over the project’s lifecycle: the goals, focus, team dynamics and 
information generated during a Collaborative Engineering project vary widely depending on the 
phase of the project’s life cycle. In general, earlier phases have these characteristics: 

1) They focus on negotiating and establishing the parameters shared amongst subsystems, 
performing multi-disciplinary system trades, proposing alternative concepts, and performing trade 
studies to determine at least one design that is feasible (and ideally to identify several designs and 
their gradients at points that are considered to be the most cost-effective in a generalized sense),  

                                                           
1  Since Systems Engineering is, by nature, a complex collaborative engineering activity (and, conversely, since 
Collaborative Engineering is normally aimed at the design of systems), when we refer to the challenges, pain points 
and needs of Collaborative Engineering we are also referring to those of Systems Engineering. 
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2) They tend to be short in duration. 

3) They are highly dynamic and interactive. 

4) They resort to quick, back-of-the-envelope calculations.  

As the project evolves the focus shifts into adding detail to subsystems and finally to the 
individual components and performing more detailed analysis and calculations, which normally 
requires the use of specialized software tools. This shift in focus notwithstanding, teams should be 
able to build on top of the results from the previous phases, recreating as little information as 
possible. Also, at the end of each stage, the information is normally packaged in some way 
(normally a written report) for review and for approval to move into the next phase (for example, 
at NASA a PDR – Product Design Review – is held at the end of Phase B to determine if they can 
proceed onto Phase C).  

To illustrate the shift in focus of Systems Engineering throughout the life of a project, Table 1 
below lists the various phases of a NASA project (as described in [NASA 1995]), and the main 
goal of each phase.  

Table 1: Project Life Cycle for Major NASA Systems 

Phase Name Goal 

Pre-A Advanced Studies 
Produce alternatives and ideas from which new programs/projects 
can be selected. Prepare program/project proposals for 
consideration. 

A Preliminary Analysis Determine the feasibility and desirability of a suggested major 
system 

B Definition 
Define the project in enough detail to establish an initial baseline 
capable of meeting mission needs. Baseline the “design-to” 
specifications. 

C Design Complete the detailed design of the system. Baseline the “build-to” 
specifications. 

D Development Build the subsystems and integrate them to create the system. 
Baseline the “as-built” specifications. 

E Operations Operate the system and dispose it properly 

 

• CHAL-005: Complex information interconnections: in any sizeable system, the information 
connections between subsystems and their parameters may quickly grow into a complex graph of 
relations that is hard to visualize and manage. In addition, these relations may not have a 
predefined input/output direction (in other words, they are generally non-causal). As a result, the 
effect that a change (of a parameter value, mathematical model, assumption, constraint, etc.) has in 
other parts of the system becomes harder to predict, while at the same time the sensitivity of the 
overall system (the degree to which changes in one part of the system impact other parts of the 
system) increases. In other words, the system becomes less “resilient” to changes. Consequently, 
the team may incur costly rework when they realize later in the design process that a seemingly 
simple change made in one system has a costly effect in another system that was not caught in 
time. System-level what-if scenarios also become increasingly difficult to perform.  

• CHAL-006: Multiple system views: a system may have multiple views depending on the criteria 
used to organize it. For example, the subsystems in a system may be organized depending on their 
function, position in the system, discipline, and geographical location. A CEE system must be able 
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to manage multiple simultaneous views of the same system, allowing users to switch to any of 
these views at any time to view or edit and maintaining consistency among them. 

• CHAL-007: Information-intensive trade studies: at various points of the project lifecycle, SEs 
may need to perform trade studies to select amongst multiple plausible alternatives that meet the 
goals and objectives of the system (effectiveness, cost, schedule, and risk – both quantifiable and 
otherwise). Trade studies vary widely in complexity and detail depending on the context and the 
phase of the project life in which they are performed, but generally speaking they involve the 
following steps (for a detailed description of the Trade Study Process, see Section 5.1 of [NASA 
1995]):  

1. Define the system’s goals and objectives, and identify the constraints it must meet. As the 
project evolves, these will take the form of quantifiable performance requirements that a 
system must meet. 

2. Define the outcome variables (measures of system effectiveness, system performance or 
technical attributes, and system cost) and the measurement methods that are going to be 
used to compute each. This step explicitly identifies the variables that are important in 
meeting the system’s goals and objectives. It also identifies the mathematical models that 
are required to evaluate them. 

3. Define the selection rule, which defines how the outcome variables are going to be used 
to make a selection of the preferred alternative. 

4. Define plausible alternatives: alternatives that can potentially meet the goals and 
objectives of the system, in other words, that are in the “solution space”. 

5. Collect data on each plausible alternative and evaluate the outcome variables using the 
measurement methods. 

6. Compute estimates of the outcome variables. 
7. Make a tentative selection. 
8. Perform a “reality check” (scrutinize the results, measurement methods, conformance to 

goals, objectives and constraints, etc.)  
9. If the tentative selection holds up to the reality check, proceed with it for further 

resolution or implementation. The estimates of the outcome variables obtained in step 6 
serve as inputs for the next resolution iteration. 

From the steps above we can see that trade studies are information- and computation-intensive 
processes that require careful management of the system variables, the interconnections amongst 
them, and the methods used to compute them. Performing these studies manually – although 
possible – is very time-consuming, costly and error prone.  

• CHAL-008: Uncertainty: when evaluating values of outcome variables in a system, some of the 
inputs, models or measurement methods being used may not be well known (e.g., environmental 
impact) or are inherently random (e.g., manufacturing processes). As a result, the values of the 
outcome variables will have varying degrees of uncertainty. Often this uncertainty is taken into 
account only implicitly—an analyst may include a measure of the uncertainty based on experience 
(e.g., the stress analysis has an error of +/- 10%). If the impact of the uncertainty is considered to 
be significant, then the SE may perform a sensitivity analysis or even a Monte Carlo simulation to 
determine the uncertainty in the output more accurately.  

Although much of the Systems Engineering practice is still based on the use of safety factors to 
account for uncertainty, increasingly the use of probabilistic representations is gaining acceptance. 
With the rapidly decreasing cost of computing resources, probabilistic design methods such as 
Design For Six Sigma (DFSS) have become feasible and more reliable alternatives to 
deterministic methods [Koch, 2002]. Yet, few engineering environments currently include tools 
for uncertainty management. To allow uncertainty to be managed effectively, tools should include 
explicit representations of uncertainty, support computational tools for propagating uncertainty 
from requirements to performance assessments, and provide methods for decision making based 
on uncertain information. For a more detailed overview of how uncertainty impacts the Systems 
Engineering process, see [Aughenbaugh, 2004]. 

 4



 

• CHAL-009: Capturing decisions and decision rationale: SEs should be able to re-trace the trail 
of decisions made about the system as it evolved through its project life cycle. This may be needed 
for a variety of purposes such as documentation, auditing, project reviews, learning, supporting 
other lifecycle processes (e.g., ranging from long-term sustainment and operation to knowledge 
reuse when initiating future systems) and so on. For example, they may need to show why a given 
design alternative was chosen against others during a trade study, or why a particular 
mathematical model was used instead of another. The decisions that are made are generally 
entered into a configuration management system as changes to (or elaborations of) the system 
baseline. However, this type of change tracking (and associated rationale capture) does not 
necessarily occur during the early stages of the design, when the baseline has not yet been 
established and therefore when a configuration management system is not being used yet. During 
the early stages of the design, any decision capture mechanism faces the additional challenge of 
having to be as unobtrusive as possible, particularly during the formulation and evaluation of 
multiple trade studies when agility is particularly critical.  

• CHAL-010: Capturing assumptions and applicability of models: for a given calculation there 
might be multiple mathematical models that are applicable - depending on the level of detail 
required or the computation cost we are willing to incur. SEs should be able to access the 
assumptions under which a given model is applicable to make an informed decision as to which 
model to utilize. Similarly, the assumptions and other relevant information that underlie 
constraints should be also captured, so that it is possible to estimate the effect of relaxing them if 
needed. 

• CHAL-011: Variety of software tools and information standards: as the project evolves, the level 
of detail required demands the use of both generalized and specialized software tools (COTS or 
home-grown) for the design, analysis and simulation of the various components of the system. The 
number of such tools may grow quite large, and sending and retrieving information to and from 
these tools (and performing the necessary data conversions to do so) may become an arduous and 
time-consuming task and drastically reduce the agility of the Systems Engineering process. Some 
existing information exchange standards (such as ISO STEP) attempt to alleviate this problem. 
However, sometimes there are several overlapping standards in the picture, and therefore we still 
need to deal with translations and transformation of information.  

• CHAL-012: Multiple dimensions of versioning control: there are at least four independent 
dimensions of versioning control involved in the design of a system: 

• Versioning Control of Design Models: individual components that make up the system 
are constantly versioned to capture modifications made to them. For example, the 
dimensions of a flap link may be modified to reduce localized stress, resulting in a new 
version of the CAD model of the flap link. This versioning is normally managed with 
traditional COTS PLM tools, but this operation also needs to be coordinated with the 
overall CEE. 

• Versioning Control of System Models: models of the top-level system and major 
subsystems are themselves also constantly revised, for example, as subsystems, output 
variables and connections are added or modified. Each of these modifications effectively 
results in a new version of these system models. 

• Versioning Control of Computation Models / Simulation Templates: when selecting a 
computation model (say, to solve for system variables or to assist in a trade study), SEs 
often resort to models that have been used (and proven successful) in previous missions. 
They may use these computation models as-is (if the usage conditions and assumptions 
are similar), or modify them to accommodate different usage conditions. Some models 
are reused often enough that they warrant capturing in the form of modular, reusable 
simulation template libraries (see CHAL-015). Overall, SEs and domain engineers need 
to be able to retrieve specific versions of models from previous designs and from 
simulation template libraries, and to modify and store new versions of models.  

• Versioning Control of Analysis/Simulation Sets: multiple analyses or simulations may be 
performed on a given version of the design models and the system model. For example, a 
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simulation may be performed using different sets of inputs, selecting different 
computation models, or selecting different system configurations. SEs need to be able to 
store the entire set used for an analysis/simulation run to be able to retrieve it and 
reproduce the results at any time. 

Also related to versioning control is the need to capture “snapshots” of the overall system. At key 
points of the project lifecycle, a snapshot of all the information is used to hold a review and assess 
the readiness to move to the next phase. This snapshot will be composed of the artifacts listed 
above at their current version at the time the snapshot. Hence, SEs need a mechanism to create 
such a snapshot and “tag” it for future retrieval (similar to the way software developers can tag a 
group of independently versioned files in CVS). 

• CHAL-013: Traceability of requirements: at each level of system resolution, SEs need to relate 
the overall system’s requirements to specific (and - particularly as the project detail grows – 
quantifiable) goals and constraints on subsystems and their parameters. Conversely, SEs should be 
able to trace the goals and constraints of a particular subsystem up to the original requirements 
they are realizing. For example, a high level requirement for a given system may be: “shall operate 
at temperatures of up to 100 F”. This requirement may translate into several requirements for a 
leaf-level component like a printed circuit board (PCB), one of which may be “the deformation at 
the midpoint of the PCB shall be less than 0.001 inch at 100 F”. A SE should be able to determine 
at any time if an arbitrarily deep subsystem (in our example, the PCB) satisfies the system 
requirements mapped to it. Current requirements management tools allow users to capture 
requirements in a central database and even linking these requirements to objects in other tools 
(such as design tools), but do not currently provide a generalized mechanism for automatically 
(and continuously) validating these requirements (directly from the design tools, or based on 
diverse analysis/simulation results). 

• CHAL-014: Workflow: a model of the system provides a global definition of how the subsystems 
in a system are composed together and how their parameters are related and constrained. It does 
not, however, explicitly indicate the sequence of steps to populate (determine the values of the 
parameters of) the system; that is, which parameters (and in what order) should be provided as 
inputs, which selections should be made (and when), and which relations will be solved (and in 
which direction). For complex systems, the number of possible combinations of all these may 
grow unwieldily large. In some cases, however, experience has identified a specific sequence of 
steps (or workflow) to successfully populate a particular system. Test scenarios could also be 
captured as workflows (as in “given a specific sequence of inputs, this are the outputs we expect”). 
For these cases, it would be valuable for a CEE system to provide a capability for capturing and 
executing these workflows. 

• CHAL-015: Modularity and reusability: large systems are rarely modeled completely from 
scratch. Some components are similar from one project to another, and hence there is always some 
level of reusability that occurs. This situation exists for many types of models (e.g., requirements 
patterns, simulation methods, geometric design features, off-the-shelf hardware, and so on). It 
occurs more frequently with fundamental, general-purpose building blocks (for example, a 
fundamental analytical concept such as a 1-D Linear Elastic Material Model), but it may also 
occur with larger, pre-assembled purpose-specific subsystems. For example one study on airframe 
structural analysis estimates there are several hundred reusable generic analytical concepts (for 
structural analysis in general) and on the order of 10,000 airframe-specific structural analysis 
templates [Peak, 2003]. CEE systems should provide the ability to define modular, reusable 
system components (namely, subsystems and relations) and store them in libraries, so than can be 
used as building blocks for building other systems. 

3.2 Desired Capabilities of a CEE System 
This section describes the desired capabilities of an envisioned CEE System to address the CEE Challenges 
and Needs listed in the previous section. These capabilities are realized by the use cases represented in the 
UML Use-Case diagram in Figure 14 (page 17). Table 2 at the end of the section (page 18) summarizes the 
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capabilities that address each challenge listed, and Table 3 (page 19) summarizes the use cases that realize 
these capabilities. 

A CEE System should provide: 

• CAP-001: End-user tools for collaborative Systems Engineering: to allow a team of SEs to 
collaboratively create, edit and navigate system models. As illustrated in Figure 2, this includes 
defining the subsystems within the system, system public and private parameters, parameter constraints, 
relations between and within subsystems, relations between parameters and connections with external 
authoring or analysis tools. It should also include the ability to formally delegate the detailed modeling 
of a subsystem to another member of the team - defining the boundary conditions (required parameters, 
constraints on parameters, inputs, etc.) within which the other member shall model the subsystem- and 
the ability to view the details of the systems designed by other members of the team (subject to 
appropriate permissions). These tools should be preferably graphical, but should also support 
alternative ways to define the system for varying user skill levels. For example, lexical editors for 
advanced users, graphical tools like SysML parametric diagram editors for intermediate users (ala 
electrical schematics), and model-based diagrams and domain-specific user interfaces for novice users.  

To make such a model-based approach efficient, the tools should include reference model libraries of 
COTS components and previous design solutions. This will allow SEs to develop system models more 
efficiently by re-using the knowledge stored in composable reference models. (A reference model is a 
structured container of information about a component or sub-system which includes models of the 
structure, the function and behavior of the component) [Paredis, 2001]. 

 
Figure 2: A System Model of a Car (using SysML notation 2) 

• CAP-002: A common graphical notation for modeling and simulating systems: A common 
(preferably standard) way to graphically describe the interfaces between systems to facilitate inter-
discipline communication and understanding of the inter-connections between systems, while at the 

                                                           
2 The SysML notations used in this document roughly correspond to SysML draft v0.9 plus more recent updates and 
experimental variations. We intend to update these examples with the final official notation when SysML v1.0 becomes 
available. 
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same time allowing each discipline to use and maintain their own preferred graphical notations 
independently. Figure 2 above shows a representation of a system using SysML [SysML].  

• CAP-003: Constructs for modeling complex system relations: to allow SEs to model the wide range 
of interconnections (or relations) that may occur in a system. Among the constructs this toolset should 
include are the following (Figure 3 illustrates each of these constructs3): 

• Formula-based relations: for defining relations between parameters that can be expressed as an 
equation (algebraic or otherwise, including equalities and inequalities) 

• Equality relations: a special case of formula-based relation (the simplest) for defining when the 
value of a parameter must be equal to the value of another parameter anywhere else (either in the 
same or in another system). 

• Constraint relations: a special type of formula-based relation defined on one parameter used to 
constraint its value. 

• Aggregate relations: for defining operations on parameters that are aggregates instead of single-
valued (e.g., to obtain the average, minimum, maximum value). 

• Buffered relations: for defining relations among parameters that allow one or more parameters to 
vary within a certain range before affecting associated parameters. The goal of this type of 
interconnection is to reduce the “brittleness” (i.e., the susceptibility of a system to be impacted by 
changes in another system) of a system.  

• Selectors: similar to switches in an electrical circuit; used for defining alternative interconnections 
whose selection is based on certain predefined conditions (e.g., logical conditions such as “if the 
value of “a” in subsystem A is greater than 10, then connect it to “b” in subsystem B, otherwise 
connect it to “c” in subsystem C”) or user choice at run time. These interconnections are also 
known as higher order relations. 
 This construct is particularly useful for capturing models of multiple levels of fidelity. For 
example, a model of a flap link may define two cross sections of the flap link: a simplified and a 
detailed one. During a preliminary stress analysis, analyst may want to choose the simplified cross 
section to perform the analysis, but later in a more detailed analysis he may want to choose the 
detailed cross section to obtain more accurate results.  

• Breakers: similar to traditional breakers in an electrical circuit; connections that can be 
automatically or manually “deactivated” when certain conditions occur.  Breakers may be treated 
as a special type of selector. 

• Black-box relations: for defining relations whose details, solution algorithms and execution 
method are encapsulated in an external block of executable code or an external software tool 
accessible via an API. Here, the relation should only define what the parameters involved are and 
any connection parameters needed to “talk” to the external software component. Examples of this 
type of relations are finite-element analyses, external software components (SOAP web services, 
Java APIs, COM components), and humans (largely based in heuristics and experience and that 
have not been captured in computable form - what we have come to call “Ask Bob” relations).  

• Unidirectional relations: Relations should be generally considered as multidirectional (that is, 
non-causal—the input/output direction is not specified in advance) to allow for multiple execution 
routes of the same system graph and enable model reusability for different scenarios. However, 
there are cases where relations are inherently causal (i.e., they cannot run in multiple directions) so 
the system should also provide a construct to support this special case that we denote as 
unidirectional.  

In addition, these constructs should also provide support for capturing uncertainty of a relation and/or 
probabilistic distributions of the input variables to allow the calculation of uncertainty of the values 
calculated. 

                                                           
3 For simplicity, relations in this figure are shown exclusively between two systems (A and B) and involving a minimal 
number of parameters, but they could also occur inside one system, or among more than two systems, and involve any 
number of parameters. 
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buffered

selector

breaker

black-box

unidirectional  
Figure 3: System Relations Types 

• CAP-004: End-user tools to visualize the complex interconnections in a system: to allow users to 
quickly assess the impact of any changes they make (to design models, system models, relations, etc.) 
to the rest of the system and take corrective measures if needed. For example, Figure 4 illustrates a 
change in a design model (a change inside the Braking subsystem). Here, a user should be able to 
quickly assess the impact of changing something in the design model (say, the diameter of the sleeve 
of the flap link shown). In this example, the value of the parameter “car6” changes to 12.5 as a result of 
this Braking subsystem change. The user should also be able to see the effect of this change anywhere in 
the system. This ability should not be restricted to changes in design models, but should ideally 
consider changes in any part of the system (system models, relations, constraints, etc.).  
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Figure 4: Impact of a Change in a System Model 

Another desired feature is to be able to visualize the margin or “slack” of a system model (Figure 5); 
that is, what can be changed (and to what extent) in a subsystem without impacting the rest of the 
system. 

System A System B

a1 b1

a2
Regular rel.

r1

Buffered rel.
r1 r2

r2

c1

System C

No Slack
(~”critical path”)

Some Slack

 
Figure 5: Slack in a System 

• CAP-005: An approach to manage consistency of shared parameters throughout the project 
lifecycle: early in the project, subsystem leads may agree that their subsystems share a parameter. They 
may also agree on constraints on its value. For example, as illustrated in Figure 6(a), the leads of 
subsystems A and B may agree to share the weight of Subsystem A (indicated by a line connecting 
parameters weight in Subsystem A and weight-a in Subsystem B), and that its value must not exceed 100 lb. 
Once this agreement is made, each subsystem lead may proceed to add detail to his or her subsystem, 
possibly redefining the way a shared parameter is calculated. For example, continuing with our 
example of Figure 6, in (b), the weight of Subsystem A is now calculated using a relation (r1) with input 
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from a solid model and other subsystem data. The risk now is that someone may make a change to the 
solid model (say, a design engineer using a CAD tool) that will increase the weight of Subsystem A 
above 100 lb, therefore “breaking” the agreement between subsystems A and B and potentially 
requiring costly rework of Subsystem B. Complicating the matter, as the system becomes more complex 
the number of parameters affecting the weight may increase, while at the same time becoming farther 
removed from the actual shared parameter (in other words, the number of intermediate relations 
between the affecting parameters and the shared parameter becomes larger). To control this situation, 
the CEE system must provide a way to constantly check that these “agreements” among subsystem are 
not being broken whenever a change is made, and if they must be broken, aid in the determination of 
what needs to be done as a result. 

System A System B

weight weight-a

(a)

System A System B

weight weight-a

(b) r1

“must be less than 100 lb”

“must be less than 100 lb”

 
Figure 6: Maintaining Consistency of Shared Parameters 

CAP-006: A versioning and configuration control mechanism (and related end-user tools): to enable 
independent fine-grained versioning of design models, system models, computation models, and 
analysis/simulation sets, a well as the shared parameters and relations among such models. Figure 7 
illustrates versioning of system models, where the model of the Car system is versioned independently 
from the contained systems (Braking, Power, Electrical and Transmission) as indicated by the version 
numbers in parenthesis. Figure 8 illustrates the versioning of a design model (the CAD model of a flap 
link in the lower left corner, labeled “Design Model V3.7”), a simulation set (labeled “Simulation Set 
#123”), and a computation model (the relation “ABS Relation1” labeled “Computation Model V1.4”). 
The figure also illustrates a specific set of inputs and outputs (arrows coming into and out of the car 
system, respectively) for that specific combination of item versions. The mechanism for versioning 
simulation sets should allow users to capture everything that was selected to run the simulation, so that 
the simulation can be retrieved at any time and re-run to obtain comparable outputs. This includes the 
versions of the system model and design models, the input values, and any run-time selections 
available (for example, where several analysis models with different levels of fidelity are available to 
solve for the same parameters).  
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Figure 7: Version Control of a System Model 
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Figure 8: Versioning various aspects of a System Model  

The versioning and configuration control mechanism should also provide “tagging” functionality 
(similar to the one provided by software versioning control systems such as CVS) to tag an arbitrary 
set of configuration-controlled artifacts for later retrieval. For example, at the end of Phase B in a 
NASA project all the system artifacts could be tagged as “PDR Version” (the version submitted to 
Preliminary Design Review”). The artifacts themselves may have different, independent versions 
(much like individual files tagged with the same tag may have different versions in CVS). 

The versioning and configuration control mechanism should also provide the appropriate check 
in/check out logic to ensure consistency when a system is revised. To illustrate this, let’s consider the 
simple example in Figure 9: two subsystems (System A.1 and System A.2) are part of a larger system 
(System A). Assume that at the beginning they are all at version 1.0. If someone creates a new version 
of System A.1 (version 2.0) and wants this version to be used in System A, then the owner of System A 
needs to check out System A and revise it to use version 2.0 of System A.1. If there are any 
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inconsistencies introduced by the new version of System A.1, they need to be resolved at this point 
(revising any of the systems to accommodate the changes). In our example, the change made to System 
A.1 does not introduce any inconsistency (only a new parameter - a12 - was added that will be used at 
the System A level later) and therefore a revision of System A to reflect the use of version 2 of System 
A.1 is sufficient (that is, no changes are needed in System A.2). The idea is that we want to prevent the 
owner of System A.1 from simply “pushing” the new version and potentially breaking the consistency 
of System A. In general, in order to use a new version of a system that has changes in functionality, the 
containing systems (and potentially the connected systems too) need to be checked out and revised as 
well. 

System A (v1.0)

System A.1 (v1.0) System A.2 (v1.0)

a11 a21
r1

System A (v2.0)

System A.1 (v2.0) System A.2 (v1.0)

a11 a21
r1

a12

 
Figure 9: Versioning and Consistency 

• CAP-007: The ability to create libraries of reusable components: to allow users to utilize and add 

 

these reusable components when building other systems. This functionality is particularly useful to 
capture commonly used analysis templates. Figure 10 illustrates such an application, where the 1D 
Linear Elastic Model system is used twice in the Extensional Rod and Torsional Rod systems (which in turn 
can be used in larger systems – not shown). This capability could be expanded beyond reusable 
analysis templates up to entire reusable systems that can be used as building blocks when composing 
larger systems. There also needs to be a way to capture the assumptions and constraints under which 
these reusable systems can be used (see CAP-008). It is important to include enough information about 
the component and its internal functioning to allow someone considering reusing it to determine that 
the component indeed works for the application it is intended. Only when people “trust” and 
understand a component will they be likely to reuse it in their models. 

 13



 

Material Model ABB

Continuum ABBs

modular
re-usage

E

α

One D Linear
Elastic Model

∆T

σ

τ

ν

γ

G

ε

εe

εt

material model

polar moment of inertia, J
radius, r  

undeformed length, Lo

twist, ϕ

theta start, ϕ1

theta end, ϕ2

r1

12 ϕϕϕ −=

r3

0L
rϕγ =

J
rTr

=τ

torque, Tr 

x
TT

G, r, γ, τ, φ, φ1, φ2 ,J

Lo

y

material model

temperature, T 

reference temperature, To

force, F 

area, A

undeformed length, Lo

total elongation, ∆L

length, L

start, x1

end, x2

E

α

One D Linear
Elastic Model

(no shear)

∆T

εσ

εe

εt

r1

12 xxL −=

r2

oLLL −=∆

r4

A
F

=σ

edb.r1

oTTT −=∆

r3

L
L∆

=ε

x
FF

E, A, α

∆LLo

∆T, ε , σ 

y
L

Torsional Rod

Extensional Rod

temperature change, ∆T

cte, α

youngs modulus, E

stress, σ

shear modulus, G

poissons ratio, ν

shear stress, τ shear strain, γ

thermal strain, εt

elastic strain, εe

strain, ε

r2

r1)1(2 ν+
=

EG

r3

r4Tt ∆= αε

Ee
σε =

r5

G
τγ =

te εεε +=

σ

ε

1D Linear Elastic Model

 
Figure 10: Analysis Building Blocks (ABBs) as Reusable System Components 

• CAP-008: Ability to capture the assumptions, rationale and limitations of a model: to allow users to 
determine under which conditions it is appropriate to use the model (this is particularly important for 
low-fidelity models) and for enabling the automatic selection of valid models or reusable subsystems. 
For example, a given relation may only be valid for a certain range of values of one of its inputs. 
Another example is a subsystem (for example, one that represents a material model) that is best used 
for preliminary design (because is fast but approximate) versus another one that is best used for 
detailed design (because is computationally expensive, but accurate). 

• CAP-009: Simulation orchestration: to allow users to run simulations (and view the results) of the 
behavior of a system (or any of its subsystems in isolation) and perform what-if scenarios under 
arbitrary input conditions. The connection to and execution of any underlying analysis or solver tools 
required to obtain output values should be transparent to the user running the simulation. The idea is 
that although domain and tool experts will still be required to set up a simulation, anyone in the team 
should be able to execute the simulation. Figure 11 illustrates a simulation set at the Car system level, 
where inputs are shown as incoming (red) arrows and outputs as outgoing (blue) arrows. Figure 12 
illustrates the same simulation running within a lower-level subsystem (ABS) and how external 
modeling and solving tools are involved (“Design Tool” is used to retrieve some of the “pm” parameters 
in the “ABSProductModel” block, “Analysis Tool” is used to solve for some of the “ana” parameters in the 
“ABSAnalysisTemplate1” block, and “Solver” is used for some of the “absr1” parameters in the 
“ABSRelation1” relation). 
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Figure 11: System Simulation 
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Figure 12: External Software Tools in a System Simulation 

In addition, the system should also support simulation scenarios where some of the parameters have 
not yet been calculated (say, because they come from other subsystems that are still in work), or cannot 
be calculated until the system is assembled together. This is particularly important to allow 
independent unit-testing for systems that are being developed in parallel.  

• CAP-010: Requirements allocation and traceability: to allow users to allocate system requirements 
(quantitative or otherwise) to the components of the system implementing those requirements. To that 
end, the system should provide users the ability to translate higher level requirements into more 
specific requirements and keep the traceability between them. The system should also allow users to 
graphically assess conformance to requirements as they are selecting design alternatives or making 
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changes to their systems. Conversely, users should be able to assess what parts of the system will be 
affected if something does not perform according to specs (for example, if a parameter value is outside 
a specified valid range). 

• CAP-011: The ability to create and execute workflows: to allow users to specify the sequence of steps 
that should be followed to populate the parameters of interest in a system. As illustrated in Figure 13, 
the idea is that users would “run” the model of a system through a workflow, which would walk the 
user through the sequence of inputs and decisions that need to be made (based on intermediate results, 
for example) in order to populate these parameters. As the model advances through the workflow, it 
becomes more and more defined, until all the parameters of interest are populated at the end of the 
workflow. The CEE system should provide the capability for defining, storing, and executing 
workflows. 
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Figure 13: Workflow 

• CAP-012: Ability to support trade studies: the system should provide the basic constructs and user 
interface to support the trade-study process described in CHAL-007 (Information-intensive trade 
studies) to capture multiple plausible alternatives and to select the “best” one to meet the goals and 
objectives of the system. It should allow users to model the system goals, objectives and constraints, 
outcome variables, measurement methods (mathematical models, information queries to external tools, 
etc.) and selection rules (selection algorithm or workflow). The system should then aid the user in 
identifying plausible alternatives (alternatives that meet the goals, or that are in the “solution space”) 
and selecting the best alternative based on the selection rules. 
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Figure 14: CEE System Use-Case Diagram 
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Table 2: CE Challenges and CEE System Desired Capabilities 

Challenges Capability(ies) Addressing Challenge 

CHAL-001 (Complex team dynamics) 

CAP-001 (End-user tools for collaborative Systems 
Engineering) 

CAP-002 (Common graphical notation for modeling and 
simulating systems) 

CAP-005 (An approach to manage consistency of shared 
parameters throughout the project lifecycle) 

CHAL-002 (Lack of end-user tools for 
collaborative Systems Engineering) 

CAP-001 (End-user tools for collaborative Systems 
Engineering) 

CHAL-003 (Multidisciplinary) 

CAP-001 (End-user tools for collaborative Systems 
Engineering) 

CAP-002 (Common graphical notation for modeling and 
simulating systems) 

CAP-005 (An approach to manage consistency of shared 
parameters throughout the project lifecycle) 

CHAL-004 (Focus shift over the project’s 
lifecycle) 

CAP-005 (An approach to manage consistency of shared 
parameters throughout the project lifecycle) 

CAP-006 (Versioning and configuration control mechanism) 

CHAL-005 (Complex information 
interconnections) 

CAP-003 (Constructs for modeling complex system relations) 

CAP-004 (End-user tools to visualize the complex 
interconnections in a system) 

CHAL-006 (Multiple system Views) 
CAP-003 (Constructs for modeling complex system relations) 

CAP-004 (End-user tools to visualize the complex 
interconnections in a system) 

CHAL-007 (Information-intensive trade studies) 

CAP-012 (Ability to support trade studies) 

CAP-003 (Constructs for modeling complex system relations) 

CAP-007 (Ability to create libraries of reusable components) 

CAP-009 (Simulation orchestration) 

CAP-011 (Ability to create and execute workflows) 

CHAL-008 (Uncertainty) CAP-003 (Constructs for modeling complex system relations) 

CHAL-009 (Capturing Design Decisions and 
Rationale) CAP-006 (Versioning and configuration control mechanism) 

CHAL-010 (Capturing assumptions and 
applicability of models) 

CAP-008 (Ability to capture the assumptions, rationale and 
limitations of a model) 

CHAL-011 (Variety of software tools and 
information standards) 

CAP-003 (Constructs for modeling complex system relations) 

CAP-009 (Simulation orchestration) 

CHAL-012 (Multiple dimensions of versioning 
control) CAP-006 (Versioning and configuration control mechanism) 

CHAL-013 (Traceability of requirements) CAP-010 (Requirements allocation and traceability) 

CHAL-014 (Workflow) CAP-011 (Ability to create and execute workflows) 
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Challenges Capability(ies) Addressing Challenge 

CHAL-015 (Modularity and Reusability) CAP-007 (Ability to create libraries of reusable components) 

Table 3: CEE Use Cases 

Desired Capability Use-Case(s) realizing Capability 

CAP-001 (End-user tools for collaborative Systems 
Engineering) UC-100 (Model System) (and related use cases) 

CAP-002 (Common graphical notation for modeling and 
simulating systems) UC-100 (Model System) (and related use cases) 

CAP-003 (Constructs for modeling complex system 
relations) UC-140 (Add System Relations) (and related use cases) 

CAP-004 (End-user tools to visualize the complex 
interconnections in a system) UC-140 (Add System Relations) (and related use cases) 

CAP-005 (An approach to manage consistency of shared 
parameters throughout the project lifecycle) 

UC-140 (Add System Relations) (and related use cases) 

UC-300 (Manage Item Model Versioning and Configuration) (and 
related use cases) 

CAP-006 (Versioning and configuration control 
mechanism) 

UC-300 (Manage Item Model Versioning and Configuration) (and 
related use cases) 

CAP-007 (Ability to create libraries of reusable 
components) UC-150 (Model Reusable Analysis System) 

CAP-009 (Simulation orchestration) UC-200 (Simulate System) (and related use cases) 

CAP-010 (Requirements allocation and traceability) UC-160 (Define Requirements Associativities) 

CAP-011 (Workflow) UC-400 (Create and Execute Workflows) 

CAP-012 (Ability to support trade studies) UC-500 (Perform Trade Study) (and related use cases) 

 

3.3 CEE System Design Considerations 
The following is a list of design considerations – beyond the ones imposed by the above functional 
capabilities - of CEEs that should be taken into account (and properly scoped) when designing a CEE 
system: 

• Solving speed required 
• Size and complexity of systems being developed 
• Number of users 
• Security requirements 
• Scalability 
• Maintainability 
• Configurability 
 

Given the same desired capabilities, different values for these considerations will generally result in 
different CEE systems (and possibly different CEE system architectures).   For example, a CEE system for 
designing commercial products within a single small company will look quite different compared to a CEE 
system for designing classified systems among large primes and their subcontractors. 
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4 Envisioned COB/MRA-based CEE Methodology 

4.1 Envisioned Next-Generation CEEs 

4.1.1 Overview 
Our envisioned CEE methodology to address the above challenges involves two new CEE System 
components (Figure 15): 1) a Composable Object (COB) Management System (CMS), and 2) a software 
development platform, termed COB Platform, on top of which a CMS and other applications are built. This 
approach embodies the COB Representation that leverages constraint graph and object-oriented concepts to 
enable micro-level associativity among diverse models. This technology provides infrastructure services 
and algorithms (constraint meta-solving, tools-access orchestration, etc.) that bring together best-of-breed 
modeling, design, and analysis tools into a collaborative modeling and simulation (M&S) environment. It 
leverages SysML as a unifying graphical nomenclature for end users to compose federated simulations by 
connecting diverse model components via fine-grained relations.  

The services this platform provides — embodied in CMS — can be coupled with existing enterprise CEE 
systems (like the NASA ESMD4 Windchill-based CEE) or used to support next-generation localized 
environments (e.g., going beyond parameter-exchange servers like ICEMaker [Kevin 2003] or parametric 
modeling orchestrators like Phoenix Integration ModelCenter). Engineers employ SysML graphical 
modeling inside COB Platform-based applications to create new components and leverage reusable 
building blocks. In this way system and domain engineering teams collaboratively model, navigate, and 
simulate systems more intuitively and better visualize and manage their complex interdependencies. 
Figure 15 shows the high-level architecture of the proposed COB Platform and CMS. The COB Platform is 
composed of a set of COB Services and a COB Software Development Toolkit (SDK), with the COB 
Representation shown along their side as their conceptual foundation. The CMS — developed using the 
COB SDK — is the deployable embodiment of the COB Platform, and comprises COB Server 
Components and COB Management Client Tools. The CMS is itself a stand-alone COB-enabled 
application and provides the basic functionality and end-user tools for authoring and executing COB graphs. 

Focusing on the COB Platform portion of the figure, the COB Representation is a constraint graph- and 
object-based knowledge representation developed by our team at the Georgia Institute of Technology (GIT). 
It provides the conceptual foundation for the COB Platform, as it defines the underlying information model 
and algorithms for implementing the COB SDK and COB Services. Section 4.2 provides an overview of 
GIT work to date on the COB Representation and the related design pattern, the Multi-Representation 
Architecture, that provides modular, reusable simulation template technology. 

End-user tool developers use the COB SDK to build applications that leverage these services. The COB 
SDK provides a class library, UI components, development tools, proxies to access the COB Services, 
samples, documentation, and wrappers for some commonly-used external tools. 

The COB Services provide the base functionality to help applications benefit from the use of constraint 
graphs as their underlying data representation model. These services include: 

• COB Graph Management Services: for managing the lifecycle (creation, meta-solving, 
persistence, disposal) of COBs and COB graphs.  

• COB Versioning Control Services: for controlling the versioning of COBs, including check in 
and check out, tagging, etc.  

• COB Persistence Services: for storing and retrieving COBs to and from a persistent store 
(database). 

• COB Workflow Services: for creating, executing and monitoring workflows that involve 
COBs undergoing state changes as they advance through their steps. 

• COTS Access Services: for accessing external tools to retrieve or solve for data.  
                                                           
4 ESMD = Exploration Systems Mission Directorate (http://exploration.nasa.gov/) 
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Figure 15: COB Platform and CMS High-Level Architecture 

Some of these services are denoted in Figure 15 as “lightweight”, meaning that they provide limited basic 
functionality in the case of the stand-alone deployment of CMS (CMS deployment is discussed later in this 
section). More complete functionality is achieved when the CMS is coupled with corresponding dedicated 
systems (such as a PLM systems, workflow engines, database management systems, or interoperability 
middleware). 

Table 4 below lists the COB Platform components and the capabilities (from Section 3.2) enabled by each. 

Table 4: CEE Capabilities Implemented by Each COB Platform Component 

COB Platform Component Enabled CEE Capability(ies) 

COB SDK Exposes the COB Services that implement the capabilities 

CMS Management Client Tools 
CAP-001 (End-user tools for collaborative Systems Engineering) (enables their development)  

CAP-004 (End-user tools to visualize the complex interconnections in a system)  

COB Graph Management Services 

CAP-001 (End-user tools for collaborative Systems Engineering) (enables their development)  

CAP-002 (Common graphical notation for modeling and simulating systems) (provides 
support for exchanging data with system modeling tools) 

CAP-003 (Constructs for modeling complex system relations) 

CAP-004 (End-user tools to visualize the complex interconnections in a system) (enables their 
development) 

CAP-005 (Approach to manage consistency of shared parameters throughout the project 
lifecycle) 

CAP-007 (Ability to create libraries of reusable components) 

CAP-008 (Ability to capture the assumptions, rationale and limitations of a model) 
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COB Platform Component Enabled CEE Capability(ies) 

CAP-009 (Simulation orchestration) 

CAP-010: Requirements allocation and traceability 

COB Versioning Control Services 
CAP-006 (Versioning and configuration control mechanism) 

CAP-007 (Ability to create libraries of reusable components) 

COB Persistence 
CAP-006 (Versioning and configuration control mechanism) 

CAP-007 (Ability to create libraries of reusable components) 

COB Workflow CAP-011: The ability to create and execute workflows 

COTS Access Services CAP-009 (Simulation orchestration) 

 

Table 2 is reproduced as Table 5, with a new column indicating which COB Platform component 
implements each capability. This table shows the path from the challenges listed in Section 3.1 in the first 
column, through the capabilities that address each challenge (Section 3.2) in the second column, to the 
COB Platform components that support these capabilities in the third column. 

Table 5: COB Platform Components Implementing Each CEE Capability 

Challenge Capability(ies) Addressing Challenge COB Platform Component 
Implementing Capability 

CAP-001 (End-user tools for collaborative 
Systems Engineering) 

CMS Management Client Tools 

COB Graph Management Services 
(enables their development) 

CAP-002 (Common graphical notation for 
modeling and simulating systems) COB Graph Management Services CHAL-001 (Complex team dynamics) 

CAP-005 (An approach to manage consistency 
of shared parameters throughout the project 
lifecycle) 

COB Graph Management Services 

CHAL-002 (Lack of end-user tools for 
collaborative Systems Engineering) 

CAP-001 (End-user tools for collaborative 
Systems Engineering) 

COB Graph Management Services 
(enables their development) 

CAP-001 (End-user tools for collaborative 
Systems Engineering) 

COB Graph Management Services 
(enables their development) 

CAP-002 (Common graphical notation for 
modeling and simulating systems) COB Graph Management Services CHAL-003 (Multidisciplinary) 

CAP-005 (An approach to manage consistency 
of shared parameters throughout the project 
lifecycle) 

COB Graph Management Services 

CAP-005 (An approach to manage consistency 
of shared parameters throughout the project 
lifecycle) 

COB Graph Management Services 

CHAL-004 (Focus shift over the 
project’s lifecycle) 

CAP-006 (Versioning and configuration control 
mechanism) 

COB Versioning Control Services 

COB Persistence 

CHAL-005 (Complex information 
CAP-003 (Constructs for modeling complex COB Graph Management Services 
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Challenge Capability(ies) Addressing Challenge COB Platform Component 
Implementing Capability 

system relations) 

interconnections) 
CAP-004 (End-user tools to visualize the 
complex interconnections in a system) 

CMS Management Client Tools 

COB Graph Management Services 

CAP-003 (Constructs for modeling complex 
system relations) COB Graph Management Services 

CHAL-006 (Multiple system Views) 
CAP-004 (End-user tools to visualize the 
complex interconnections in a system) COB Graph Management Services 

CAP-012 (Ability to support trade studies) COB Graph Management Services 

CAP-003 (Constructs for modeling complex 
system relations) COB Graph Management Services 

CAP-007 (Ability to create libraries of reusable 
components) 

COB Graph Management Services  

COB Versioning Control Services 

COB Persistence 

CAP-009 (Simulation orchestration) 
COB Graph Management Services 

COTS Access Services 

CHAL-007 (Information-intensive 
trade studies) 

CAP-011 (Ability to create and execute 
workflows) COB Workflow Services 

CHAL-008 (Uncertainty) CAP-003 (Constructs for modeling complex 
system relations) COB Graph Management Services 

CHAL-009 (Capturing Design 
Decisions and Rationale) 

CAP-006 (Versioning and configuration control 
mechanism) 

COB Versioning Control Services 

COB Persistence 

CHAL-010 (Capturing assumptions 
and applicability of models) 

CAP-008 (Ability to capture the assumptions, 
rationale and limitations of a model) 

COB Graph Management Services 

COB Versioning Control Services 

CAP-003 (Constructs for modeling complex 
system relations) COB Graph Management Services 

CHAL-011 (Variety of software tools 
and information standards) 

CAP-009 (Simulation orchestration) 
COB Graph Management Services 

COTS Access Services 

CHAL-012 (Multiple dimensions of 
versioning control) 

CAP-006 (Versioning and configuration control 
mechanism) 

COB Versioning Control Services 

COB Persistence 

CHAL-013 (Traceability of 
requirements) 

CAP-010 (Requirements allocation and 
traceability) COB Graph Management Services 

CHAL-014 (Workflow) CAP-011 (Ability to create and execute 
workflows) COB Workflow Services 

CHAL-015 (Modularity and 
Reusability) 

CAP-007 (Ability to create libraries of reusable 
components) 

COB Graph Management Services 

COB Versioning Control Services 

COB Persistence 
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4.1.2 COB Management System (CMS)-based CEEs 
As mentioned above, the envisioned CMS can be either deployed stand-alone or coupled with existing 
dedicated systems (such as PLM systems, workflow engines, database management systems, 
interoperability middleware, etc.). These two deployment options are illustrated in Figures 16 and 17, 
respectively. Figure 16 illustrates the stand-alone option, in which the server side provides the COB 
Services. The client side consists of a suite of tools (“COB Management Client Tools” in the figure) for 
managing the system and performing basic COB management tasks. Also shown in Figure 16 are COB-
enabled end-user applications, which developers create using the COB API to access the CMS services on 
the server. The CMS Management Client Tools are essentially COB-enabled end-user applications too, 
with their only distinguishing characteristic being that they are delivered as part of the CMS. 

While COB-enabled end-user applications would still have to implement the user interface (UI) and 
business logic specific to their application, they would leverage the graph solving, generic COB UI, 
information mapping, and tool access “plumbing” logic provided by the COB Services. The underlying 
constraint graph used by these applications does not need to be hard-coded in the application itself; instead, 
it can be stored and maintained independently and read by the application (and potentially by several COB-
enabled applications concurrently) at run time.  

Depending on the application, the underlying constraint graph structure may be relatively static and require 
little or no modification during the life of the application.  Such applications leverage the graph to enable 
attribute value changes and input/output direction changes.  These type of static COB graph structures may 
be created upfront (at application design time) using a SysML tool or simply by hand with a text editor 
(using the COB lexical form, for example). Other applications may want to provide users the ability to 
manipulate and modify the graph structure at run time; for these the COB SDK also provides UI 
Components than can be embedded in the application to display the constraint graph as a SysML diagram 
and enable interactive graphical manipulation. 
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Figure 16: Stand-Alone COB Management System (CMS) and COB-Enabled Applications  

(e.g., in “next-generation ICEMaker” mode) 
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The vision is that, using COB-enabled applications, teams of engineers will be able to collaboratively and 
graphically (using SysML) model their systems and the complex interrelations between their parameters. 
They will assemble models by using a combination of reusable models from predefined libraries and new 
models they create from scratch. They will drag and drop graphically pluggable components — provided 
by tool vendors or third parties — that encapsulate the access to external tools and connect them to the rest 
of the system. Lastly, they will run simulations of these systems, and the underlying environment will 
orchestrate the execution of external software tools and the storage and retrieval of information behind the 
scenes. 

The SysML diagram of the system is treated as a constraint graph representing the relations between the 
subsystems and their parameters, ranging from simple equality relations to complex algorithms 
implemented in external software tools such as finite element analysis (FEA) solvers. The direction in 
which these relations are executed is not assumed in advance; so a given relation may support multiple 
input/output scenarios. In other words, COBs provide a non-causal knowledge representation, which allows 
the same models to take on various causalities depending on appropriate I/O combinations at different 
points during the development of complex systems like space systems. Underneath, the COB Services 
manage the solving of the constraint graph and coordinate the access and execution of external tools to 
solve for the outputs. Freed from peripheral tasks such as coding, tool set up and execution coordination, 
and data re-entry, engineers can now focus on the design of the system itself, evaluate more alternatives, 
consider more what-if scenarios, and detect conflicts earlier — all this leading to better designs. 

Figure 17 illustrates the second CMS deployment option, where existing dedicated systems (CEE/PLM 
systems, in this example) are coupled with a CMS. Here the CEE/PLM system and the CMS enhance each 
other’s functionality; the CEE/PLM system provides industrial strength configuration management, access 
control, workflow and tool access services to the CMS, while the CMS provides graph management and 
meta-solving services to the CEE/PLM system. 
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Figure 17: CMS Coupled with a CEE/PLM System  

(e.g., the NASA ESMD enterprise-level Windchill-based CEE) 
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Table 6 below shows a sample of possible solution providers for each COB-based CEE system component 
in the two figures above (the shaded ones are already developed or currently under development by GIT).  
This table shows that many components leverage existing COTS capabilities to a large degree, with COBs 
providing the means to represent fine-grained interconnection knowledge and to orchestrate interoperability 
among the diverse models associated with these COTS capabilities. 

 

Table 6: Typical Sample CEE Subsystem Solution Providers5

Component Application Category Providers 

CMS Management Client Tools System Management Utilities GIT (R&D extensions in progress) 

SysML Modeling Tools 

EmbeddedPlus (EmbeddedPlus Engineering), 
Rhapsody (I-Logix), RSA (IBM), Studio 
(Artisan Software), TAU (Telelogic), 
Teamcenter SE (UGS) 

Requirements Management Tools 
Cradle (3SL), DOORS (Telelogic), Eclipse, 
RequisitePro (IBM), Teamcenter 
Requirements (UGS) 

COB-Enabled  
End-User Applications 

PWA Warpage, Chip Packaging, 
PWB Layup GIT 

CMS COB Services  GIT (R&D extensions in progress) 

ECAD/MCAD 

Allegro (Cadence), Expedition (Mentor 
Graphics), Visual (Zuken); 
AutoCAD/Inventor (Autodesk), Catia 
(Dassault), NX (UGS), Pro/E (PTC) 

Discipline-Specific Simulation Tools Simulink (MathWorks), Modelica, Dymola 
(Dynasim) 

Mathematical Solvers Mathematica (Wolfram Research), Matlab 
(MathWorks) 

CAE: CFD, FEA, ... Ansys (Ansys Inc.), Flotherm (Flomerics), 
NX Nastran (UGS), Patran (MSC Software) 

Traditional  
Engineering Applications 

Optimizers, Trade Space Explorers iSIGHT (Engineous), ModelCenter (Phoenix) 

Middleware Engineering Middleware AnalysisServer (Phoenix), FIPER 
(Engineous) 

PLM Systems PLM/PDM 
Enovia (Dassault), Teamcenter 
Engineering/Enterprise (UGS),  
Vault (Autodesk), Windchill (PTC) 

 

4.1.3 Standards-based Collective Models as a CEE System Component 
An important aspect of a CEE system is the conceptual aggregation of all the models that are relevant to a 
given complex engineering system (e.g., all the models relevant to the space shuttle).  We call this 
aggregation a collective product model or a collective system model [Peak, Lubell, et al. 2004].  Figure 18 
illustrates how a collective model (outer oval) is generally composed by diverse submodels (inner sets). 

                                                           
5 Listed alphabetically by tool name. 
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Each submodel contains information about a specific domain (e.g., Requirements Management, as well as 
ECAD, MCAD, etc. in later phases). Each tool in this figure typically focuses on viewing or editing a 
particular type of submodel within this overall system model (e.g., Mentor Graphics CAD tools perform 
circuit board electrical design and layout, and Pro/E CAD tools develop 3D enclosures and circuit board 
mechanical assemblies). Portions of the collective model may exist that are not addressed by traditional 
(COTS) tools (for example, the Cost submodel in the figure). This situation is where so-called “Gap-
Filling” tools are required to populate these submodels. 

The schemas in this collective model may have been defined by a variety of bodies, including international, 
government or corporate standard organizations (e.g., STEP APs, IDF, etc.), vendors (UGS’ PLM-XML, 
Dassault Systemes’ 3D For All, Autodesk’s DWF), may have been custom-defined for the specific 
application, or may be a combination of standard schemas with custom extensions. In addition, these 
schemas may be defined using a variety of modeling languages (e.g., OWL, EXPRESS, XML, 
UML/SysML, etc.). Lastly, the interoperability between each tool and the CEE may be achieved using a 
variety of technologies (file-based, messaging, SOAP, CORBA, RPC, in-memory, in-process, via a 
database, etc.). 

Realistically, these differences in schemas, modeling languages and interoperability technologies may 
never be reconciled in a universal standard way. The availability of data exchange standards helps alleviate 
the problem by providing common schemas that facilitate interoperability among tools and between these 
tools and the collective model. But any standard is limited in scope and normally targets a specific domain. 
Therefore there will always be the need to perform semantic and syntactic mappings between tools and 
their models to achieve integration and extensibility at a multi-disciplinary level. Our “multi-technology” 
approach acknowledges this reality and provides a mechanism for federating models into collective models 
at a level of abstraction above these differences.  We believe engineers can employ SysML as a primary 
unifying graphical nomenclature to compose federated simulations, while the underlying COBs (via the 
COB Services) “take care of” (i.e., contain the logic embodied in code) the access to external tools, 
information retrieval and mapping, and solving for outputs.  

As an example, consider a COB that encapsulates requirements information. There will be code behind this 
COB to access information from a requirements management tool like Cradle and map it to the collective 
model. Even more desirable, the same COB may access requirements information via a standards-based 
interface or repository (e.g., via STEP AP233) instead of being dependent on a particular tool like Cradle. 
By leveraging such standards, the COB automatically also “works” with other requirements management 
tools that conform to this standard (such as UGS Teamcenter Requirements or Vitech Core). 

Overall, this collective model view underscores what we call a model-centric thinking vs. tool-centric 
thinking.  In the latter case, the focus and entry point is a tool which may often seem to hold a model 
hostage (i.e., forcing you to use that tool to do anything with your model, including not providing you open 
access to your model). With model-centric thinking, people utilize a variety tools to work on their model 
(analogous to how machinists utilize a variety machine tools to fabricate their part).  
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Figure 18: CEE Information Federation via a Standards-based Collective Model 

4.2 Composable Objects/Multi-Representation Architecture (COB/MRA) 
Background 

4.2.1 Overview 
As mentioned in the previous sections, the COB Representation provides the conceptual foundation of the 
COB Platform, as it defines the underlying data model and algorithms for the implementation of the COB 
Platform and its services.  

This section overviews the COB Representation — and the related Multi-Representation Architecture 
(MRA) — and discusses how they relate to the envisioned CEE System. It also provides references for 
more detailed discussions and example uses of these technologies. 

Table 7 below provides a summary of GIT technologies aimed at next-generation CEEs, with brief 
descriptions of what they are and how they relate to the COB Platform. 
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Table 7: GIT Technologies for Next-Generation CEEs 

Current GIT 
Technology What it is How it relates to the envisioned  

COB Platform 

Composable Objects 
(COBs) Representation 

A constraint graph- and object-based 
information modeling representation. Provides 
the conceptual foundation for XaiTools. 

Will be enhanced to provide the 
conceptual foundation for the COB 
Platform.  

Multi-Representation 
Architecture (MRA) 

A design pattern that represents the primary 
types of conceptual models in engineering 
simulation environments and their fine-grain 
associativities (including idealization relations 
between design models and analysis models). 
It has been implemented using COBs and 
XaiTools for various electronic packaging and 
aerospace applications to transform and 
marshal information between external 
authoring and solving software tools 

Will be generalized to systems-of-
systems (SoS) and implemented using 
the COB Platform for the same purpose. 

XaiTools 

An early implementation by GIT of COB and 
MRA concepts in the form of a toolkit of 
classes, services and an end-user tool (a “COB 
Browser”). Currently being used in various 
electronic packaging and aerospace 
applications developed by GIT. 

Will evolve into an implementation of  
COB Platform and CMS concepts. 

 

4.2.2 Composable Object (COB) Representation 
Composable objects (COBs)6 have been developed by GIT as a means for integrating design models with 
diverse analysis7 models. Design and analysis information is typically represented by a collection of 
interrelated models of varying discipline and fidelity. Thus a method for capturing diverse multi-fidelity 
models and their fine-grained relations was needed. It was also desirable for this method to be independent 
of the specific CAD/CAE tools used to create, manage, and compute these models. 

The COB representation is based on object and constraint graph concepts to gain their modularity and 
multi-directional capabilities. Object techniques provide a semantically rich way to organize and reuse the 
complex relations and properties that naturally underlie engineering models. Representing relations as 
constraints makes COBs flexible because constraints can generally accept any combination of I/O 
information flows. This multi-directionality enables design sizing and design verification using the same 
COB-based analysis model. Engineers perform such activities throughout the design process, with the 
former being characteristic of early design stages and vice versa.  

The COB representation includes several modeling languages. It has lexical formulations that are computer 
interpretable, as well as graphical forms that aid human comprehension (Figure 10, Figure 19). For 
example, the graphical constraint schematic notation (Figure 20) emphasizes object structure and relations 
among object attributes and has strong electrical schematic analogies.  Over the past few years we have 
been working with other SysML developers to embody COB concepts within SysML (especially regarding 
its internal block diagram and parametric diagram constructs) [Peak 2002c; Peak 2005].  We believe this 
approach will a) benefit SysML by providing conceptual formalisms and a broad variety of examples, and 
b) benefit COBs by leveraging a richer set of UML2-based constructs and broader commercial support by 
multiple vendors. 

                                                           
6 COBs are referred in some of the older literature as Constrained Objects. The change in name was to better reflect the 
composability nature of these objects. 
7 In this overview, “analysis” and “simulation” denotes modeling physical behavior such as stress and 
temperature. Envisioned next-generation extensions include generalizations for broader classes of modeling 
and simulation.  
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Figure 21 provides examples of the main classical COB formulations for a triangle template and its usage 
in a prism. A prism instance is also shown. See [Peak 1999a, 1999d, 2002c] and [Wilson 2000, 2001] for 
more details on the COB Representation and further examples. 
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Figure 19: Lexical and Graphical Formulations of the COB Representation 
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Figure 20: Basic Constraint Schematic Notation (green text = explanation) 
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Figure 21: COB Representation Tutorial for Triangles and Prisms 

4.2.3 The Multi-Representation Architecture (MRA) 
The Multi-Representation Architecture (MRA) (Figure 22) is the conceptual foundation of an X-analysis 
integration (XAI)8 methodology based on ontological patterns that naturally exist in engineering analysis 
processes. It is particularly aimed at design-analysis integration in CAD/CAE environments with high 
diversity (e.g., diversity of parts, analysis discipline, analysis idealization fidelity, design tools, and analysis 
tools) and where explicit design-analysis associativity is important (e.g., for automation, knowledge capture, 
and auditing). In this context, analysis means simulating the physical behavior of a part or system (e.g., 
determining the stress in a circuit board solder joint). 

                                                           
8 X = design, manufacture, sustainment, and other lifecycle phases. 
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Figure 22: The Multi-Representation Architecture (MRA) 

The MRA contains intermediate representations as stepping stones to achieve the flexibility and modularity 
dictated by complex domains like simulation-based design and engineering (SBD/SBE). Employing an 
extended object-oriented approach, these intermediate representations are naturally groupings of concepts 
that occur between traditional design and analysis models. The MRA is particularly aimed at capturing 
reusable analysis knowledge at the preliminary and detailed design stages. 

The MRA conceptual patterns (Figure 22) include the following (all of which are represented as COBs): 

• Analyzable product models (APMs): Represent knowledge-based design models augmented with 
analysis-oriented overlays. Include multi-fidelity idealizations and multi-source design 
information coordination (including interfacing with diverse CAD tools and design-oriented 
descriptive resources).  

• Context-based analysis models (CBAMs): Represent product-specific analysis modules/templates. 
Capture idealization decisions inside CAD-CAE associativity relations. Connect APMs and ABBs. 

• Analysis building blocks (ABBs): Represent product-independent analytical concepts as 
semantically rich reusable, modular, tool-independent objects. Generate SMMs based on solution 
technique-specific considerations such as symmetry and mesh density.  

• Solution method models (SMMs): Represent solution method-specific models. Support white box 
reuse of existing tools (e.g., FEA tools and in-house codes). Automatic interactions occur through 
native command lines and/or APIs based on standards like CORBA and SOAP. 

The reader is referred to [Peak 1998, 1999a, 1999d, 2002a] and [Tamburini 1997a, 1999] for more details 
on the MRA and examples. 

4.2.4 Towards a Next-Generation MRA for Systems-of-Systems (SoS)  
Table 8 below summarizes the major types of patterns that exist when complex systems are described and 
simulated. The first column shows terminology developed in our original MRA work where the focus was 
on patterns for domain-level design-analysis integration (DAI). The second column highlights the purpose 
of each traditional pattern. The last column provides terminology towards generalizing these concepts for 
the modeling and simulation of arbitrary systems-of-systems (SoS). We plan to further develop this 
generalized MRA approach for such applications in future phases of this work. 
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Table 8: Generalized MRA Patterns for Complex Systems Modeling & Simulation (M&S) 
Traditional Patterns 

(for CAD-CAE) 
Traditional CAD-CAE Purpose  

regarding Design-Analysis Integration (DAI) 
Generalized Patterns 
(for complex systems) 

design tools  
(CAD) 

- Define systems (parts, assemblies, …) in necessary & 
sufficient descriptive terms (not behavioral) 
- Usually are COTS tools 

system description tools 

analyzable product models 
(APMs) 

- Represent design aspects of products and enable connections 
with design tools 
- Support idealizations usable in numerous analysis models 
- Have possibly many associated CBAMs that verify 
requirements 

integrated system model 

context-based  
analysis models  
(CBAMs) 

- Contain linkages explicitly representing design-analysis 
associativity, indicating usage of APM idealizations 
- Create analysis models from ABBs and automatically connect 
them to APM attributes 
- Represent common analysis models as automated, predefined 
templates 
- Support interaction of analysis models of varying complexity 
and solution method 
- Enable parametric design studies via multi-directional 
input/output (in some cases) 

context-based  
simulation model 
 
(system-specific 
 simulation model) 

analysis building blocks 
(ABBs)  
 
(generic analytical concepts) 

- Represent analytical concepts as composable objects  
- Act as semantically rich 'pre-preprocessor' & 'post-
postprocessor' models.  
- ABB instances create SMM instances based on solution 
method considerations and receive results after automated 
solution tool execution 

simulation building block 
 
 
(generic analytical concepts) 

solution method models 
(SMMs) 

- Packages solution tool inputs, outputs, and control as 
integrated objects (often as a componentized wrapping of 
solution tool native files) 
- Automates solution tool access and results retrieval via tool 
agents and wrappers 

simulation method model 

solution tools  
(CAE) 

- Execute simulation models (often as vendor-specific native 
files) 
- Usually are COTS tools  

simulation tool 
(solver) 

version: 2005-10-26 

4.2.5 XaiTools - a Reference Implementation 
To help validate the COB Representation and MRA technique, we have developed COBs for a variety of 
aerospace and electronic packaging test cases using our toolkit called XaiTools. XaiTools is an example 
embodiment of COB concepts and includes an API, samples and a spreadsheet-like COB Browser (Figure 
23) which supports knowledge capture in a non-causal object-oriented manner. We use constraint 
management techniques to employ existing solvers whenever possible such as commercial math and finite 
element analysis (FEA) tools (e.g., Ansys). Tutorials and short courses convey the concepts and include 
examples that combine generic and domain-specific COBs. COBs have been deployed in production usage 
environments to help automate chip package thermal resistance analysis.  See [Wilson 1999, 2000] for 
more details on XaiTools. 
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Figure 23: XaiTools COB Browser 

4.2.6 Space System Example 
See Appendix A for a conceptual test case illustrating this COB/MRA approach (including usage of 
SysML) for a satellite system example known as FireSat. 

4.3 COB Representation Requirements to Enable Next-Generation CEEs 
So far we have discussed the challenges of Collaborative Engineering (Section 3.1) and the desired 
capabilities of a CEE System to address these challenges (Section 3.2). In Section 4.1 we discussed how 
these capabilities are covered by each subsystem of our COB Platform. We also established that the COB 
Representation is the conceptual foundation for the COB Platform.  

Now that we have a working knowledge of the COB Representation, in this section we list the requirements 
that the COB Representation must satisfy to support the promised COB Platform functionality, and thus 
enable next-generation CEE systems.. These requirements are presented in Table 9 below. 
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Table 9: COB Representation Required Capabilities 

Capability Req # COB Representation Requirement 

CR-001 The COB Representation’s data model and operations shall be exposed via an 
API to enable development of COB-based applications. 

CR-002 

The COB Representation shall provide the basic constructs (or “building 
blocks”) for defining the components of a system; including systems, 
subsystems, system parameters, parameter constraints, relations between and 
within subsystems, and relations between system parameters . 

CR-003 The COB Representation shall provide mutually equivalent lexical and 
graphical representations for these constructs.  

CAP-001 (End-user tools for 
collaborative Systems 
Engineering) 

CR-004 
The COB Representation shall support interactive constraint schematic 
construction, hybrid graphs (mixing causal and non-causal relations), and 
automated effective inversion of causal relations. 

CR-005 
The COB Representation shall specify how its constructs shall be represented 
in SysML, and provide workarounds whenever there is no direct mapping 
between the two. CAP-002 (Common graphical 

notation for modeling and 
simulating systems) 

CR-006 The COB Representation shall be able to interoperate with the data exchange 
format chosen by the SysML standard (still TBD, but most likely to be XMI) 

CR-007 

The COB Representation shall enable the representation of the parametric 
relationships among all fidelity levels (coarse, detailed), domains 
(mechanical, electrical, software, controls, optics, thermal, etc.) and types 
(physics-based, functional, analytical, simulation, visualization, design, etc.) 
of system and component models. 

CR-008 The COB Representation shall provide constructs for defining formula-based 
relations (see CAP-003 in Section 3.2). 

CR-009 The COB Representation shall provide constructs for defining equality 
relations (see CAP-003 in Section 3.2). 

CR-010 The COB Representation shall provide constructs for defining constraint 
relations (see CAP-003 in Section 3.2). 

CR-011 The COB Representation shall provide constructs for defining aggregate 
relations (see CAP-003 in Section 3.2). 

CR-012 The COB Representation shall provide constructs for defining buffered 
relations (see CAP-003 in Section 3.2). 

CR-013 The COB Representation shall provide constructs for defining selector 
relations (see CAP-003 in Section 3.2). 

CR-014 The COB Representation shall provide constructs for defining breaker 
relations (see CAP-003 in Section 3.2). 

CR-015 The COB Representation shall provide constructs for defining black-box 
relations (see CAP-003 in Section 3.2). 

CR-016 The COB Representation shall provide constructs for defining unidirectional 
relations (see CAP-003 in Section 3.2). 

CAP-003 (Constructs for modeling 
complex system relations) 

CR-017 The COB Representation shall allow the definition of the possible directions 
in a relation (i.e., allowable sets of inputs and outputs). 
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CR-018 The COB Representation shall provide constructs for capturing the 
uncertainty of a relation. 

CR-019 The COB Representation shall support aggregate attributes (i.e., attributes of 
type List) 

CR-020 
The COB Representation shall enable a user to identify, represent, visualize, 
and navigate the relationships among the diverse types of models used to 
analyze and simulate systems. 

CR-021 
The COB Representation shall provide equivalent computable lexical forms 
and human-interpretable graphical forms for representing complex constraints 
and relations between systems. 

CR-022 

The COB Representation shall provide an intuitive visualization language for 
rigorously specifying non-causal and algorithmic relationships between 
physical assembly parameters and corresponding idealized analysis model 
parameters. 

CR-023 
The COB Representation shall provide a mechanism to determine what 
system components (systems, parameters or relations) are affected by a 
change in a given component. 

CR-024 The COB Representation shall provide a mechanism to measure the slack of 
the relations in the system (see CAP-004 in Section 3.2). 

CAP-004 (End-user tools to 
visualize the complex 
interconnections in a system) 

CR-025 

The COB Representation shall provide a mechanism to determine what 
parameters are bound (constrained) as a consequence of binding a given 
parameter. Conversely, it shall provide a mechanism to determine what 
parameters should be bound in order to bind another parameter. 

CAP-005 (An approach to manage 
consistency of shared parameters 
throughout the project lifecycle) 

CR-026 
The COB Representation shall provide a mechanism to continuously check 
that the system is in a consistent state and the constraints and relations are not 
being violated as users make changes and additions to the system. 

CR-027 The COB Representation shall provide constructs for capturing versioning of 
system components (systems, subsystems and relations). 

CR-028 
The COB Representation shall provide constructs for capturing versioning of 
simulations sets (which include the set of inputs, the versions of the system 
and design models, and all the run-time selections made). 

CAP-006 (Versioning and 
configuration control mechanism) 

CR-029 The COB Representation shall provide the necessary check in/check out logic 
to ensure that the consistency of systems is maintained throughout versioning. 

CR-030 The COB Representation shall allow the definition of reusable, adaptable 
analysis building blocks. CAP-007 (Ability to create 

libraries of reusable components) 
CR-031 The COB Representation shall support inheritance of attributes and relations. 

CR-032 The COB Representation shall provide constructs for capturing the 
assumptions, rationale and limitations of a model. 

CR-033 
The COB Representation shall provide a mechanism for filtering the models 
that are applicable to a particular context, based on its assumptions, rationale 
and limitations. 

CAP-008 (Ability to capture the 
assumptions, rationale and 
limitations of a model) 

CR-034 
The COB Representation shall provide a mechanism to capture the design 
intent while using models of multiple fidelities (for example, capturing that a 
2D model and 3D model of a component are being used for the same intent) 
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CR-035 
The COB Representation shall be independent of the specific CAD/E tools 
used to create, manage, and compute these models, since tools for different 
domains are often provided by different vendors. 

CR-036 The COB Representation shall support the use of external programs as white-
box relations. 

CR-037 The COB Representation shall provide a framework to interoperate with 
COTS and interoperability middleware. 

CR-038 

The COB Representation shall be able to leverage standard representations of 
product data (such as ISO STEP) but shall not rely on their availability or 
completeness. In other words, the methodology shall also work with 
custom/ad-hoc/non-standard representations or extensions to standard 
representations. 

CR-039 The COB Representation shall support providing relations (parametric 
constraints) as outputs of a relation in addition of numeric values. 

CR-040 
The COB Representation shall support the use of value range constraints to 
remove extraneous solutions when there are multiple solutions for a given 
parameter. 

CAP-009 (Simulation 
orchestration) 

CR-041 
Whenever possible, the COB Representation shall leverage and/or be able to 
interoperate with other methodologies (such as XML/XMI, UML/SysML, 
OWL, Semantic Webs, STEP, topic maps). 

CR-042 
The COB Representation shall provide constructs for defining requirements 
(quantitative or otherwise) and allocating them to the components of the 
system implementing them. 

CR-043 The COB Representation shall provide a mechanism for checking 
conformance to quantitative requirements. 

CAP-010 (Requirements 
allocation and traceability) 

CR-044 The COB Representation shall provide the mechanism for figuring out which 
requirements can be relaxed in the event of a conformance conflict. 

CR-045 The COB Representation shall provide constructs for defining workflows. 

CAP-011 (Workflow) 
CR-046 

The COB Representation shall provide a mechanism for executing workflows 
(i.e., advancing a model of a system through a sequence of steps, each of 
which may query and/or change the values of the system parameters). 

 

5 Summary 
We presented a vision for next-generation collaborative engineering environments (CEEs) that are based on 
the composable object (COB) knowledge representation.  This methodology leverages the multi-
representation architecture (MRA) for simulation templates, the user-oriented SysML standard for system 
modeling, and standards like STEP AP233 (ISO 10303-233) for enhanced interoperability.  

The objective of this document has been to define requirements for the COB representation.  However, to 
achieve that objective, we first documented today’s major challenges and pain points of CEEs and then 
mapped these challenges to desired CEE system capabilities.  Then we described an advanced CEE 
methodology in terms of envisioned COB components.  Given that basis, we could then effectively specify 
COB requirements.   

In our current project we are defining and developing next-generation COB capabilities.  Progress to date 
includes the following accomplishments:  
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• We implemented various COB examples as SysML models in a representative commercial 
modeling tool (Artisan Studio).  See draft space system examples in Appendix A, plus other more 
complete examples for mechanical, electrical, and hydraulic systems [Peak et al. 2005; Peak, 
2005].  

• We have implemented a prototype interface between the above SysML tool (Studio) and XaiTools, 
which enables SysML-based model authoring and COB-based execution using commercial math 
and FEA solvers.  We are also in the process of implementing a similar interface to a dynamics 
system modeling tool (Dymola). 

• To increase ease-of-use and familiarity, we have extended COB lexical support in XaiTools to 
include XML-based formats. 

From these experiences it appears that SysML will be able to provide most, if not all, of the structural 
representation constructs imposed by the above COB requirements.  Additionally, we have identified 
subsolving constraint graph algorithms that will likely form the basis for the associated COB algorithm 
extensions. 

Given these promising results thus far, we are optimistic we will fulfill the COB requirements defined in 
this document in subsequent phases and thus provide the foundation for next-generation CEEs.  
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Appendix A - Satellite System Example: FireSat 
This Appendix highlights how COBs and their embodiment as SysML models might be applied to a sample 
space system. We utilize the FireSat fire-detecting satellite system described in Space Mission Analysis and 
Design (SMAD) [Larson and Wertz, 1999] as the backdrop. 

First, Figure 24 overviews the SMAD space system design process. Our examples below start roughly at 
the “Definition of Elements” level and then proceed to the conceptual design of a sample subsystem: the 
attitude determination and control (ADC) system. We end with several leaf-level domain models: design 
and simulation models for an ADC subsystem circuit board (which are themselves composed from generic 
reusable building blocks). 

Figure 25 is an abstract schematic of the FireSat system showing estimates for key parameters like lifetime, 
orbit, and mass. 

Figure 26 is a conceptual draft of this test case. It shows the FireSat system design (from SMAD Chapter 
11) represented as SysML parametric diagrams for three levels of COB-based models. Figure 26 (a) shows 
the top-level system design where items like orbit and mass properties are modular templates utilized by 
several of the subsystems. Figure 26 (b) is an initial design of the ADC subsystem where the relations and 
parameters needed to support magnetic torquer subsystem design have been included. Figure 26 (c) goes 
one level deeper to illustrate initial magnetic torquer subsystem sizing and design.  

This magnetic torquer system has a current drive electronics subsystem, which eventually decomposes to 
assemblies including circuit boards. Figure 27 (a) is a COB-based MRA panorama depicting design and 
simulation models at multiple abstraction levels that are all utilized at this same leaf-level of system 
decomposition. Figure 27 (b) is a SysML class diagram view for the printed wiring board aspects of this 
panorama (PWB = bare circuit board).  

Figure 27 (c) and Figure 27 (d) are SysML parametric templates for two of these physics-based 
simulations: pwb_extensional_model and pwb_1D_warpage_model. Both of these are product-specific templates 
known as context-based analysis models (CBAMs) in terms of the MRA. Figure 27 (a) and Figure 27 (c) 
show how the design aspects come from a domain tool (ECAD) and other design sources coordinated by an 
analyzable product model (APM). The template connects these design aspects to a generic analytical 
building block (the deformation model block), which is processed as a solution method model (SMM) 
using general purpose solvers like FEA tools. Decomposed requirements are the prime motivation behind 
such templates, and they typically provide both condition/environment inputs like temperature and results 
evaluation factors like margin of safety as shown in the diagram.  

The template in Figure 27 (d) has a similar structure. Its deformation model is composed of the extensional 
rod analysis building block (ABB) seen in Figure 28, which bottoms out in another ABB (a linear elastic 
material model) that contains only primitive attributes and relations. Such ABBs are often solved using 
external COTS math solvers. Classical COB constraint schematic views (a motivator behind this new 
SysML diagram notation) of these same ABBs were given in Figure 10.  

Altogether, this example covers diverse interconnected models spanning roughly 6 levels of system 
decomposition (from top-level satellite system to circuit board features) and 7 levels of abstraction 
(including from native CAD model to context-specific simulation model to generic simulation building 
blocks to native solver tool). We hope to implement such an example in the near future as a test case to 
verify and validate the COB/MRA-based approach described in this document. 
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Figure 24: Space System Design Process [Larson and Wertz, 1999] 

 

 
Figure 25: FireSat Space Satellite Abstract System Schematic [Larson and Wertz, 1999] 
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Figure 26 (a):  FireSat top-level system design 

Figure 26: FireSat System Design as COB-based SysML Diagrams (Conceptual Draft) 
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Figure 26 (b):  FireSat ADC subsystem design (initial subsystem requirements and sizing) 
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Figure 26 (c): FireSat magnetic torquer subsystem design (initial subsystem requirements and sizing) 
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Figure 27(a): Design-Analysis Interoperability Panorama 
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Figure 27 (b): Circuit Board Analysis Template Structure (UML/SysML Class Diagram) 

Figure 27: COB/MRA-based Design and Simulation Templates  
for a Leaf-level FireSat Subsystem: Circuit Boards 
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Figure 27 (c): Sample SysML-Based Circuit Board Analysis Template: pwb_1D_warpage_model 

(Implemented in the Artisan Studio UML/Modeling Tool) 
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Figure 27 (d): Sample SysML-Based Circuit Board Analysis Template: pwb_extensional_model 

Figure 27 (continued) 
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Figure 28: General Purpose Analysis Building Blocks (ABBs) Utilized in Figure 27 (d) 

(SysML Formulations of ABBs in Figure 10) 
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