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ABSTRACT

  Thermal considerations in Printed Wiring Board (PWB)
assemblies are becoming increasingly important as packaging
constraints shrink and power use escalates.  In this paper, we
provide a study on the potential for a Genetic Algorithm-driven
PWB layout design tool to improve the thermal performance of
such assemblies.  As a case study,  the thermo-mechanical fatigue
of surface mounted leadless chip carriers on an FR4 epoxy board
is used.  We have found that by utilizing appropriate formula-
based engineering approximations, the efficiency of Genetic
Algorithms in finding near-optimal and optimal results makes
this approach effective as an explorative 'scouting' approach to
identify promising board configurations for more computationally
expensive evaluations such as finite element method.

1. INTRODUCTION

  One of the tasks a designer of a Printed Wiring Board (PWB)
faces is placement of electrical components on the board.  There
are many constraints on possible locations, primarily determined
by the electrical circuit design of the board.  However, increasing
customer demands for more processing power in smaller
packages mean that many PWBs are operating at temperatures
significantly above ambient (75 - 90°C).  This presents a problem
for surface mounted components, as the solder connections
between the board and the component are stressed by the thermal
expansion differences between these two bodies.  Repetitive use
(i.e. power on, power off cycles) leads to fatigue failure, a
phenomena referred to as solder joint thermo-mechanical fatigue.
To maximize the fatigue life of a particular surface mounted
(SM) component, then, it is desirable that the component be

located in a low temperature region of the board.  However, since
some SM components are more susceptible to fatigue damage
than others, and since the temperature gradients across the board
may vary as illustrated below, there exists an ordering of
components in available locations which will maximize the
fatigue life of the entire PWB.  (Note that any component failure
anywhere on the board constitutes a PWB failure).

                 Figure 1-1

  Electrical and other constraints on the placement of the
components are presumed to limit the number of available
positions to a finite number.  There are obviously only a finite
number of components to place in some or all of these available



slots.  Thus, the problem is a combinatorial type of problem, well
suited to solution using a genetic algorithm.  This article will first
provide a brief background in genetic algorithms and solder joint
thermo-mechanical fatigue, before presenting the preliminary
results obtained by a genetic algorithm approach.  Further work is
planned to integrate this approach into sophisticated computer
based thermal analysis tools.

2. GENETIC ALGORITHM BACKGROUND

2.1 Definition of Genetic Algorithms
  Genetic algorithms (GAs) represent a class of adaptive search
techniques that combine a Darwinian survival-of-the-fittest
among discrete string structures (artificial chromosomes
representing possible problem solutions) and a structured, yet
randomized, information exchange among these structures.  This
sets them apart from typical optimization and search processes in
the following ways [Goldberg, 1989]:

1. GAs work with a coding of the parameter set, not the
parameters themselves.

2. GAs search from a population of points, not a single
point.

3. GAs use an evaluation function to determine 'payoff' in
directing the search, rather than derivatives or other
auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic
rules.

The search and information exchange functions within a GA are
carried out by the following:

GA = Reproduction + Mutation + Selection
The algorithm typically works on a constant-size population of
structures (also called strings, or chromosomes).  Some portion of
that population 'reproduce' - or create new structures based on
their own structure.  This reproduction is performed through
crossover operators that assimilate the characteristics of the
parents via different algorithms. Mutation (and possibly
inversion, a shuffling operation) operators are also used to
increase the diversity of the population, and to avoid premature
convergence at local optima.  The selection process then removes
the least fit members of the population, leaving the better
structures to exchange information.
  This process is essentially a simultaneous optimization of a
large population of configurations, which makes the genetic
algorithm an extremely efficient optimizer. The search progresses
largely in terms of groups of genes which confer advantageous
traits, alternately termed co-adapted genes, schema, or
hyperplanes.  Because the groups of genes which remain in the
population do so only because their parents (and earlier
ancestors) were 'fit', GAs bias the makeup of new individuals in
response to feedback on the fitness of previously generated
individuals.  Thus GA's exploit knowledge accumulating over
time (generations) about hyperplanes within the search space.
  GA's are unconstrained search procedures.  Constraints can be
handled through penalty functions, post recombination/mutation
operators which change any constraint-violating structures into

valid arrangements,  or by crossover operators which only
produce valid structures.
  There are a variety of terms which are freely used in the genetic
algorithm arena,  combining both biological terms and computer
science terms.  The reader not familiar with Genetic Algorithms
is encouraged to review one of the very good introductory texts
(such as [Goldberg, 1989] or [Davis, 1991]) before attempting to
proceed further, as the remainder of this paper assumes a basic
level of familiarity with GA jargon.

2.2 Advantages of GAs
  Much of the interest in genetic algorithms is due to the fact that
they provide a set of efficient search heuristics without the need
for incorporating highly domain-specific knowledge.  This
efficiency stems from the use of selective reproduction and
recombination of structures to adjust the area of searching
(hyperplanes) according to the average fitness of strings in those
hyperplanes.  The search for a solution is therefore carried out in
the most promising areas of the state space.  Because genetic
algorithms need  not search along the contours of the function
being  optimized, they tend not to become trapped in local
minima (although this is somewhat dependent on the values
selected for the GA control parameters).  And, as mentioned in
the previous section, the recombination of previous solutions
means that the algorithm acts as if it had 'learned' from its past
states.
  The genetic algorithm approach is 'inherently parallel' [Holland,
1975] in that many solution candidates (the multiple hyperplanes
within each member of the population) are all interacting at once.
GAs are also very well suited to implementation on parallel
processing hardware due to the simultaneous evaluation of the
entire population.  When implemented on parallel hardware, even
inefficiently tuned GAs are extremely rapid solution finders.
  Finally, "In addition, a number of experimental studies show
that GA's exhibit impressive efficiency in practice.  While
classical gradient search techniques are more efficient for
problems which satisfy  tight constraints, GA's consistently
outperform both gradient techniques and various forms of random
search on more difficult (and more common) problems, such as
optimizations involving discontinuous, noisy, high-dimensional,
and multimodal objective functions." [Grefenstette, 1986]

3. LITERATURE REVIEW

3.1 General Genetic Algorithm Research
  John Holland [Holland, 1975] is generally considered to be the
pioneer in the field of genetic algorithms in the sense that he was
the first to set up a mathematical framework for solving generic
problems using methods extracted from biological processes.  In
addition to defining the terminology explained in the Background
section, he also originated much of the theoretical understanding
of Genetic Algorithms.  A more recent general text in the field
has been written by one of John Holland's early students, David
Goldberg [Goldberg, 1989].  Similarly, [Davis, 1991] provides an



introductory 'tutorial' on GAs, and then presents chapter-long
summaries on current GA applied research.
  The computational efficiency of Genetic Algorithms suffers
from sensitivity to values used for the tuning parameters.
(Although a standard set of parameters do provide a fairly good
search for a variety of problems.) These parameters are also quite
different than the expected parameters for a given problem (i.e.
mutation rate, at first brush, does not seem related to a search for
an optimal spring, for example).  [Grefenstette, 1986] identified
values for Population Size, Crossover Rate, Mutation Rate,
Generation Gap, a response surface scaling parameter, and
Selection Strategies to produce efficient GAs from a search space

of 218 possible GAs for a set of numerical optimization problems
(specifically, parabola, Rosenbrock's saddle, step function,
quartic with noise, and Shekel's foxholes). Grefenstette concludes
that the performance of GAs is a nonlinear function of the control
parameters, and discontinuities and local optima cannot be ruled
out.   However, he also has demonstrated that very good
performance can be obtained with a range of control settings.

3.2 Genetic Algorithms Applied to Electronic
Component Placement
  Genetic algorithms are an extremely topical research topic, and
several authors have studied their use for electronic board design.
Typically, early configuration design is the focus of these GA
design tools, where the main design problem is the location of
subassemblies on a larger assembly.  These electronic component
placement problems have been considered by a number of
researchers.  Most of the papers ( [Cohoon and Paris, 1986],
[Shahookar and Mazumder, 1990], [Chan, Heming et al., 1991])
examine placement of modules on a VLSI chip to minimize chip
area and interconnect lengths.  [Jin and Chan, 1992] extended the
same performance metrics to discrete analog (through hole)
components.
  The increasing importance of good thermal design dictates high
rewards for integrating thermal considerations into the early
stages of the design cycle these GA-based tools address.
Surprisingly, however, no-one has yet incorporated thermal
performance criteria into the design systems described in the
literature.
  An application of genetic algorithms to a related area was
published by [Wong and Leu, 1993].  These authors looked at the
planning of assembly operations (placement/insertion sequence
and machine setup) on printed circuit boards to minimize
assembly time.  One of the advantages of this approach is its
general nature - it is applicable across a wide variety of assembly
machines (subject to a taxonomy developed by the authors),
whereas traditional approaches had been very machine specific.

4. PWB FATIGUE PROBLEM BACKGROUND

4.1 Thermo-Mechanical Solder Joint Fatigue
  Surface Mount Technology (SMT), the practice of attaching
electrical components to a substrate via a lap solder joint, has
moved from the military/aerospace applications of the 1960s to

widespread commercial use [Capillo, 1990].  The main drivers
for this migration away from conventional through-hole mounting
are higher packing densities (fifty to seventy percent higher than
possible with conventional designs), better electrical
performance, and much more rapid manufacturing processes.
However, the advantages of higher packaging densities,
miniaturization, and faster circuit speeds, result in elevated
operating temperatures.  Many commercial applications of SMT
utilize components and substrates with large differences in their
coefficients of thermal expansion.1  As mentioned in the
introduction, this presents a problem for surface mounted
components, as the solder connections between the board and the
component are more compliant than the component or the board,
and so are stressed in shear by the differences in extension
between these two bodies.  Repetitive use (i.e. power on, power
off cycles) leads to fatigue failure by cracking, a phenomena
referred to as solder joint thermo-mechanical fatigue.
  Not all components are equally susceptible to fatigue failure,
however.  Obviously, the thermal expansion equation dictates
that the extension is small if the length is small:

∆ ∆L T L= ∗ ∗α                 (4-1)
  where ∆L = Thermal expansion

∆T = Change in temperature
α = Coefficient of thermal expansion
L = Length of body undergoing expansion

Thus, the solder stresses due to CTE differences are small if the
component's area is small.  Small SMT components such as chip
resistors and capacitors, therefore, seldom experience fatigue
failure in practice.  The differential expansion between the board
and component can be further exacerbated, however,  when the
two bodies are at different temperatures, as can happen when
power is dissipated within the component.  The most vulnerable
components, in terms of solder joint reliability, are typically the
hermetic leadless chip carriers (LCCCs), which usually enclose
and protect silicon VLSI chips.  These LCCCs are subject to both
pressures toward fatigue loading- they are large relative to
resistor chips (LCCCs can be as large as 25 mm square, versus
the 1.3 mm square typical chip resistor), and they can operate at
temperatures substantially different from board temperatures.
  Although a description of the underlying phenomena of solder
joint fatigue failure makes the problem appear simple, designing
a solution is not a trivial matter.  Printed circuit boards which
more closely match the CTEs of the SMT components are
expensive (typically they involve Kevlar composites or copper-
Invar-copper restraining cores).  Many factors affect the observed
fatigue life of a component, including the volume and geometry
of the solder joint (and more is not always better, as excess solder
makes the joint stiff and brittle), the positioning of the
component over the copper traces on the PWB (which in turn
affects the solder joint geometry), the formation of brittle
intermetallic compounds over time, and material properties of the

                                                       
1The ceramic cores of most SMT components are either beryllium oxide or
aluminum oxide, which have CTEs in the range of 5 to 7 ppm/°C, whereas
the typical low cost printed circuit board material is epoxy fiberglass
laminate, which has a CTE of 12 to 16 ppm/°C.



solder.  The section below describes some of the engineering
models which have been proposed to facilitate robust design.

4.2 Modeling Solder Joint Fatigue
  As described above, the functional reliability of surface mount
technology is a complex issue involving many not well
understood components.  A detailed analysis is typically only
possible using finite element methods.  For example, [Akay et al.,
1992] used FEM to analyze factors affecting the prediction of
solder joint cycle life in surface-mount assemblies. He studied
several parameters including initial temperature, temperature
ramp time and hold time, solder grain size, and constitutive
equations for solder alloys. His results indicate that creep and
plasticity of the solder joints have a substantial effect on thermal
fatigue life.  [Ozmat, 1990] reached similar conclusions with two
dimensional finite element models.  However, in the design of a
typical board, it is not possible to analyze each and every solder
joint, and furthermore at the initial design stage, many of the
details regarding the solder joint may not be known.
  Robust design can only be assured, however, by analyzing large
numbers of solder joints for each possible board configuration,
and the number of board configurations to be considered will also
be large.  Therefore, a relatively simple predictive model is
required to facilitate preliminary design tasks such as component
placement while accounting for thermal fatigue issues.  One such
model is the simple Engelmaier extensional model  [Engelmaier,
1983].
  This model takes a purely phenomenological approach and
relegates second-order effects to a lumped empirical figure.  The
fatigue model assumes two rods of homogenous material
(typically the composite FR4 for the PWB and alumina for the
chip component), and homogenous, isotropic, eutectic Pb-Sn
solder shear bodies.

  Figure 4.2-1: Modeling a component as a Two Rod Model

The shear strain is calculated from steady-state temperature and
TCE (thermal coefficient of expansion) differentials between the
package and interconnect board without consideration of elastic
deformations.  This value represents the average plastic shear
strain which is converted into solder joint cycle life.  These
calculations are illustrated below (adapted from [Engelmaier,
1983]).
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   Table 4.2.1: Engelmaier Thermo-mechanical Fatigue Model

Engelmaier claims the assumption that all shear deformation is
plastic is valid because, " ...the Manson-Coffin plot for solder is
completely dominated by plastic deformation and does not have
any significant elastic strain component...".  However, it is
important to note that the lumped empirical figure of merit (F in
the above table) is valid only for an approximate temperature
range.
Since the model can only be assumed to be close to experimental
results in the neighborhood where the 'tweaking' parameter was
set, the range of board temperatures will be kept within the range
85°C to 92°C, with the ambient temperature kept fixed at 20°C.

4.3 Modeling Board/Component Temperatures
  The temperature profiles, both transient and steady state, that
develop across printed circuit wiring boards can be extremely
complex.  They are affected by physical conditions such as
internal cyclic power dissipation, external thermal cycling of
forced air stream, thermal gradients with mounting enclosures,
mounting hardware, etc.  Most commercial packages use finite
element or finite difference methods to calculate the temperature
profile of a board under 'worst case' conditions.  An example of
such a commercial package is AutoTherm by Mentor Graphics.
  Because the temperature distribution on a PWB is determined
in part by the location of the heat-dissipating chips on the board,
ideally each new placement of components should be analyzed
using a package such as AutoTherm.  Genetic Algorithms require
thousands, or even tens of thousands, of such evaluations,
however.  The computational expense of performing the number
of calculations required effectively rules out this option.  An



alternate approach is to identify similar groupings of chip
configurations, and have separate thermal analyzes run for each
configuration.  The analysis of any individual layout would then
consist of determining which category or group of layouts it
belonged to, and then applying the thermal profile corresponding
to that group.  The simplest implementation of this approach is to
have only one group, of course, and this approach has been
adopted initially.
  The changes in the board's temperature distribution brought
about by the placement of chips on the board was accounted for
in a primitive way.  This approach started with an initial
temperature distribution across the circuit board, which was then
modified depending on the locations of the LCCC chips- each
chip making its immediate environment a few degrees warmer.
This first order model (described in greater detail in Section 6.2
below) represents some of the component placement / board
temperature interactions which characterize real systems, without
the computational expense of finite element methods.
  The component temperatures are modeled for the purposes of
their contribution to the plastic strain of the solder as fixed
values.  Therefore, the transient strains caused by the component
and circuit board reaching their steady state values are lumped
into the correction factor F.  Engelmaier claims that for the high
CTE mismatch case of ceramic components on FR4 substrates,
these transients are not significant contributors to the overall
strain.  (He suggests a correction factor between 1.2 to 1.4 to
account for both transient strains and board warpage effects.)
  The actual component temperatures used come from
Engelmaier's 1983 paper and [Peak, 1992].  Engelmaier's LCCC
temperature of 96°C assumes a ceramic chip carrier, 16.5 mm
square, dissipating 1.25 Watts, with forced convection of 65°C
air at 1.5 m/s.

5. PRELIMINARY COMPUTER IMPLEMENTATION

5.1 General Approach
   The models described above were implemented in the GENEtic
Search Implementation System (GENESIS), version 5.0
([Grefenstette, 1990]).  GENESIS is a genetic algorithm for
function optimization available in the public domain.  It is
written in the programming language C, and requires only that
the user write a problem specific evaluation function.  GENESIS
provides several advanced GA features including scaling, two
point crossover, the option to heuristically chose the initial
population, schema tracking, and an optional elitist selection
strategy.  This code was compiled and run on a Unix SparcServer
1000 using Sun OS 5.
   The value of the evaluation function for each member of the
population (a specific component layout on the circuit board) will
be determined by finding the minimum fatigue life of all the
placed components.  A thermal profile of the board will allow
determination of the temperature at each position, initially by
using a look up table.  A second, more sophisticated algorithm
will determine the temperature at each position based on the
initial board temperature profile and the location of the chips
themselves.  It should be pointed out that this evaluation function

does not provide much information on the full ordering of the
components - in effect, it only provides information about the
worst placed component, and it does not indicate which
component is the worst component.  This did not prove to be a
problem in practice, as the results below will indicate.

0 1 2

3 ...

96°

Figure 5.1-1: Identifying chip placement locations

  This implementation provides 32 available 'slots' for the chips to
be positioned in.2  These slots may be conceptualized as broad
regions of the PWB, as shown above, or as specifically located
available board space on a more tightly constrained PWB layout.
  No explicit constraint has been placed on the number of
components which may cluster in one region (square patch in the
figure above).  If, conversely, a one-to-one mapping of
components to slots is desired, a penalty function could be added
to the evaluation function.  For example, the locally variable
board temperature problem provides a mild penalty to the
grouping of components together, because each component in a
region raises the temperature by 2 degrees, making it a less
suitable place for additional components.
  Since each chip can then be located in any of the regions, or
slots, on the board, and the total number of regions on the board
was set at 32, the size of the possible solution space is:

  N = 325   ≈ 33.6 million possible solutions.

  A simple way to encode the information required is to have a
structure of 5 genes, each corresponding to one of five LCCC
chips to be placed on the PWB.  Each gene can take a value from
0 to 31, corresponding to the region that chip is located in.  This
is illustrated below.

L o c a t io n
o f  L C C C

# 1

L o c a t io n
o f  L C C C

# 2

L o c a t io n
o f  L C C C

# 3

L o c a t io n
o f  L C C C

# 4

L o c a t io n
o f  L C C C

# 5

Figure 5.1-2 : Chromosome/String Format

                                                       
2The actual structures manipulated by GENESIS are binary strings.  The
range of values that each gene may assume, therefore, must be a power of 2.



  Several features of the GENESIS code were utilized to improve
the performance of the GA.  Elitist selection strategy was
employed to insure the best string from each generation was not
lost (removed from the next generation) due to mutation or
replacement.  The location values were represented in binary
form using a Gray code rather than the usual base 2 binary form.
(Gray codes have the property that adjacent integer values differ
at exactly one bit position.)  Finally, a scaling function was
applied to prevent early emergence of an inferior solution.
  The results obtained from these implementations are discussed
below.

6. RESULTS

6.1 Initial Results and Trend Analysis of GA
Parameters
  As mentioned in the literature review, Genetic Algorithms
suffer from a high degree of sensitivity to the values of the
'control parameters'.  These parameters- population size,
crossover rate, mutation rate, replacement rate- drastically affect
how quickly the GA finds the optimal solution.  (It has been
shown that GAs will always find the optimal solution in a finite
period of time, although this time may be transcomputational.
[Rudolph, 1994])
  Generic recommendations exist for 'good' control settings, based
on observations of performance on a wide range of different
functions.  We conducted a series of experiments on a simplified
problem to tune the parameters for the specific nature of our
function space.  (Note that  the values obtained here are for the
evaluation function described above, and may not be quite as
optimal for a non-linear FE evaluation function.)
  The simplified problem chosen was placement of 5 chips on a
board with an arbitrary fixed temperature distribution which
remains unaffected by chip placement.  Thus, the ideal solution
to this problem can be found by solving 5 independent placement
problems.  (The GA sees a coupled problem, however, because
the only information it receives is the worst performance of all 5
chips, with no information identifying which chip is failing first.
We force the GA to solve the coupled problem because we are
trying to tweak the parameters for searching the coupled solution
space.)  No restrictions are made on placement, so the problem
solution is easily visible by inspection- all of the chips must be
placed in the coolest part of the board.
  Factorial analysis of the control settings revealed a high degree
of interaction.  These interactions and possible explanations for
them are produced in the table below.

Effect of and: and: is Why?
High
Replacement
(Generation
Gap)
(100% vs.
50%)

-
Replace 'good'
structures faster than
you can make them

High
Mutation
(5% vs. 1%)

-
Disrupts inheritance

Larger
Population
(500 vs. 100)

-
Slows convergence

More trials
(10,000
vs.1,000)

+
More 'time' to look

More trials Larger
Population +

When a big
population finally
converges, it's a very
good solution.

High
Mutation

Larger
Population -

Worsens a slow
convergence

More trials High
Mutation

Larger
Population -

2 Strong divergent
forces on population

More trials High
Crossover

Larger
Population -

For disruption, high
crossover ≈ mutation

Table 6.1.1: Short description of GA control parameter effects

The optimal settings thus obtained are reproduced in Table 6.1.2
below, along with typical generic 'recommended' settings.

PWB Settings Generic Settings
Crossover Rate: 0.60 0.60
Generation Gap: 0.50 0.50
Mutation Rate: 0.01 0.001
Population Size: 500 50
Number of Trials: 25,000 1,000

Table 6.1.2: Experimentally tuned vs. 'Plain Vanilla' GA
Parameter settings

The parameters differ from recommended generic values mainly
as a tradeoff of efficiency versus maximum exploration of the
state space.  We use a higher mutation rate to lower the chances
of getting stuck in a local optimum.  We use a higher population
to start with a higher sampling of the solution space.
  With an optimally tuned GA, we are now ready to tackle the
more challenging problem where chip placement affects local
board temperature.



6.2 Coupled Component Placement/Board Temperature
Results
  The component placement problem addressed in the previous
section, although reasonably difficult from a GA point of view,
given the number of possible solutions and the information
content of the evaluation function, is fairly simple to solve
manually.  A simple examination of the board reveals the coolest
area, and the best solution is simply to place all the chips there.
Unfortunately, the problem of placement of heat generating chips
is not that simple in the real world, because very placement of the
chips affects the temperature distribution we are trying to exploit
to find the coolest part of the board.  To better model this real
world process, a slightly more sophisticated evaluation function
reflects the localized increase in temperature due to a chip
placement, as illustrated below.

+ 2°+ 1° + 1°

  96°

    Figure 6.2-1: Localized PWB warming by LCCC chip

The temperature of the board is increased by 2 degrees Celsius in
the board region in which the chip is placed, and by 1 degree in
adjacent numbered regions.  Heat is allowed to spread to adjacent
numbered regions rather than geographically adjacent regions to
simplify the coding involved and to prove the concept.  The
approach taken here can be generalized to a more elaborate
geography-based heat distribution scheme of arbitrary complexity
(accounting for the direction of forced convection, for example).
  Note that this approach, adopted to minimize computational
effort in this feasibility study, is linearly additive- there are no
nonlinear effects due to side by side placement of chips.  This
linear additive property means other optimization algorithms
could be used to solve this specific model.  (For example, placing
each chip sequentially in the coolest remaining area of the board.)
We have used a GA, however, for a number of reasons.  First, the
GA approach has reliably found the optimal placement for several
thermal distributions and different chip/board local heating
patterns.  Second, the component placement research undertaken
by the authors cited in Section 3.2 above indicates additional
performance metrics associated with interconnect lengths and
PWB area utilized can be usefully incorporated into a Genetic
Algorithm approach.  Finally, a GA will permit a non-linear
interaction model, where all the chips must be placed on the
board before a final temperature distribution can be computed.
GAs excel at solving this type of problem, where placements
must be known before an evaluation can be computed.
  Even this simplistic coupling of the temperature profile to the
component placement, however, makes this problem difficult to

solve by examination.  This problem approximates a realistic
optimization problem in printed wiring assemblies, and so is a
useful application case to test the full power of GAs.
  GENESIS was able to solve this problem extremely quickly,
handling the 25,000 scheduled trials in approximately 4 seconds
on the SparcServer 1000 described earlier.  One of the best
placement solutions for fatigue is illustrated below.  First, the
original board, shown both numerically and as a patch plot where
elevation indicates temperature (cooler patches are darker):

Figure 6.2-2: PWB temperatures before warming by LCCC chips

Second, the temperature of the same board, after the LCCC
components have been positioned to yield the maximum fatigue
life, is illustrated below (arrows and circles indicate sites):



Figure 6.2-3: PWB temperatures after warming by LCCC chips
(arrows and circles indicate chip placement)

Note the overall increase in board temperature illustrated in
Figure 6.2-3 (indicated by the increased number of white
patches), a result of the localized warming effected by the chips.
The actual value obtained for the fatigue life of the board was
847 cycles- bounded by an LCCC placed over a section of PWB
with a local temperature of 88°C.  This fatigue life was verified
as an uppermost limit possible with the given temperature profile
by re-running the GA with an iteration limit of 100,000 trials.
The fatigue life obtained is consistent with the values obtained by
Engelmaier, as he states, "Thus for an application requiring 1000
power on/off cycles per year, solder joint failures will occur in
less than one year with [large LCCC components and]
epoxy/glass substrates..." [Engelmaier, 1983].
  The placement illustrated above is not the only possible
arrangement.  One of the benefits of a GA approach is that it
generates multiple solutions (if multiple solutions are possible).
The specifics of the problem described above allowed the GA to
generate 8 alternative placements with equal fatigue lives.  These
alternate solutions can be evaluated with other PWB performance
metrics in a lexicographic fashion, if desired.

7. DIRECTIONS FOR FURTHER IMPROVEMENTS AND
CLOSURE

  In this paper, we discussed the use of Genetic Algorithms for
exploring the vast combinatoric solution space of alternate PWB
layouts.  We have provided an overview of genetic algorithm
research and their application to electric component placement.
We applied a GA code (Genesis) to solve a combinatorial
thermo-fatigue placement problem using a well-established
formula based approximation for fatigue life (the Engelmaier
model) and simple heuristics for heat transfer effects.  Our GA
implementation was able to find superior PWB layouts. In our
opinion, a GA driven PWB layout design tool holds promise for
design explorations.
  Open issues to be addressed are the computational demand of
GAs versus the accuracy and detail needed at different stages in
the PWB design process.  The high computational demand of
GAs on serial computer hardware will realistically restrict a GA-
based PWB thermal design tool to using formula expressions and
numeric approximations.  Industrial applications will, of course,
require more accurate thermal models and methods for
calculating the changing thermal gradient across the PWB than
those explained here.  Also, other thermal management
objectives, such as reducing the temperature of the hottest part of
the board, or separating heat sensitive components from heat
sources need to be investigated.  At some point, a trade-off has to
be made between searching a vast design space with lower
accuracy versus a small search with higher accuracy.
  In our opinion, however, the application of GAs to the
preliminary design of PWBs holds great promise in improving the
thermal performance of electronic packages.  We believe that
sufficiently sophisticated approximations will allow the discovery
of beneficial layouts, possibly far removed from a starting
configuration, which can then be thoroughly examined by
extensive finite element analysis. We believe, at present, that a
GA based design tool is best envisioned as a scout, exploring the
length and breadth of the solution space for the most globally
promising PWB layouts, where more exhaustive methods can be
focused.   Our future work will be focused on establishing the
boundaries for such explorative design tools.
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