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Abstract

The Product Simulation Integration (PSI) Structures project is under way in Boeing Commercial Aircraft Group (BCAG) to
reduce costs and cycle time in the design, analysis, and support of commercial airplanes.  The objective of the PSI project is
to define and enhance the processes, methods, and tools to integrate structural product simulation with structural product
definition.  This includes automated engineering analysis as an integral component of the product definition.  Subprojects
have been defined and working selected topics toward accomplishing the objectives of the PSI for BCAG Structures.
Formalized integration activities have also been identified to support the PSI subprojects through their technology life
cycle.  [Prather & Amador, 1997]

As part of PSI, Georgia Tech has contributed an information modeling language, termed constrained objects
(COBs), that is aimed at next-generation stress analysis tools.  COBs combine object and constraint graph
techniques to represent engineering concepts in a flexible, modular manner.  COBs form the basis of the
extended multi-representation architecture (MRA) for analysis integration, which is targeted at environments
with high diversity in parts, analyses, and tools [Peak et al. 1998].  A key MRA distinctive is the support for
explicit design-analysis associativity (for automation and knowledge capture) and multidirectional relations (for
both design sizing and design checking). Another MRA characteristic is using COBs to represent and manage
complex constraint networks that naturally underlie engineering design analysis.

Using a case study approach, lug and fitting design guides have been recast as example reusable COB libraries.
The use of these and other COBs on structural parts relevant to the aerospace industry has been demonstrated.
These case studies utilize XaiTools, a toolkit implementation of MRA concepts, which interfaces representative
design tools (CATIA CAD, materials and fasteners libraries) and general purpose analysis tools (Mathematica
solver, ANSYS FEA).

It is anticipated that COBs and the MRA will contribute key technologies to the overall PSI next-generation
analysis tool architecture.  The potential impact of explicit design-analysis associativity is significant.
Capturing such knowledge, which is largely lost today, enables libraries of highly automated analysis modules
and provides a precise reusable record of idealization decisions.  User adaptation/creation of existing/new
analysis templates is also possible.

Today creating views of analysis results such as internal analysis documentation (strength check notes) and
regulatory agency summaries typically requires extensive manual effort.  While COBs focus on core
associativity and analysis computation relations, their combination with technology like XML should enable
interactive “pullable views” to help streamline this analysis task.  Other COB applications are anticipated,
including upstream sizing and inter-analysis associativity.
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1 Introduction
This document overviews Phase 1 deliverables based on the original proposal and priority
refinements directed by the sponsor.  These items have been demonstrated at Boeing PSI
workshops and documented in workshop minutes.  Work during this phase has focused on
technology needed for next generation tools as opposed to immediate improvements to current
production tools.

2 Deliverables
1) Constrained object (COB) information modeling language for next generation integrated

analysis templates.
The COB language [Wilson, 1999], based on the general purpose STEP EXPRESS information
modeling language, has specific features to address the needs of engineering analysis integration.
It has the following capabilities:

• Various information modeling forms: computable lexical forms (for automation) and
graphical forms (to aid human understanding and development). (Figure 1)

• Object constructs: sub/supertypes, inheritance, basic aggregates, multifidelity objects
• Multidirectionality (I/O change).  This enables both synthesis (design sizing) and verification

(design checking) from the same analysis model in many cases.
• Wrapping external programs as black box relations.  This allows use of specialty & legacy

tools as appropriate within a consistent framework.

Implementing MRA concepts (below) as COBs is the main analysis application of this language.

2) COB-based analysis integration architecture and related methodology [Peak et al. 1998,
1999] (Figure 2 - Figure 3).

The extended multi-representation architecture (MRA)1 is aimed at design-analysis integration in
environments with high diversity (e.g., diversity of parts, number of analyses, analysis discipline,
analysis idealization fidelity, design tools, and analysis tools) and for cases where explicit design-
analysis associativity is important.  It has the following main representations:

• Analysis building blocks (ABBs)   (Figure 4-Figure 5)
• Represent product-independent analysis concepts as reusable, modular, adaptable objects.

• Solution method models (SMMs)  (Figure 6-Figure 7)
• Represent tool-specific models as wrapped in semantically richer ABBs.
• Support black box usage of existing tools (e.g., general purpose FEA and in-house codes

like IAS functions, as well as tightly integrated capabilities such as CATIA GPS).
• Fold diverse solution techniques into the constraint-based uniformity of the MRA.

• Analyzable product models (APMs) (Figure 8) [Tamburini, 1999]
• Join and filter design data from multiple data sources.
• Add multifidelity idealizations (e.g., relations between detailed CATIA geometry and

idealized fitting analysis parameters) for use in possibly many analyses.
• Context-based analysis models (CBAMs) (Figure 9)

• A.k.a. analysis templates, analysis modules, and analysis problems
• Contain explicit associativity relations between design models (APMs) and analysis

objects (ABBs)

                                                     
1 See notes in the References (Section 4) for a summary of recent MRA extensions.
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The PSI effort has highlighted other aspects needed in an analysis integration architecture.  GIT
provided initial concept development for some of these:

a) Inter-analysis associativity (between an analysis and its next-higher/peer analyses).  This
also deals with the representation of design requirements, conditions, and loads.

b) Pullable views that utilize COBs.

3) CATIA CAD tagging technique [Chandrasekhar, 1999]
This technique extracts detailed CAD model design parameters for use in analysis (Figure 10).
Specifically, APMs contain relations between these design parameters and idealized analysis
parameters that are used in CBAMs.  We implemented and evaluated two tagging approaches in
CATIA v4: geometric entity-based and dimension entity-based.  The technique was tested with
several CAD models including the bike frame, which has representative aerospace part
complexity.  The latter approach appears most promising for general use, but in CATIA v4 it is
limited to one-way extraction of design parameters.  Another approach using PARAM3D has
been proposed that may offer two-way capabilities.

4) Prototype analysis integration toolkit, XaiTools, with Users Guide (Attachment A) and
examples.

XaiTools™ is a Java-based toolkit for X-analysis integration that is a reference implementation of
MRA concepts.  Earlier projects showed the Smalltalk-based first generation toolkit, DaiTools, in
action in electronic packaging environments [Peak et al. 1997].  Projects are underway to migrate
and extend these product-data driven analysis capabilities in XaiTools.

Demonstrating architecture applicability across product domains, a XaiTools architecture for
aerospace-oriented environments is summarized in Figure 11.  It has the following characteristics:

• Integration with representative analysis tools:
a) FEA tools: ANSYS
b) Symbolic solver/general math tool: Mathematica
c) Other solution tools: Via black box wrapping approach

• Integration with representative design tools:
d) Geometric modeling tool: CATIA
e) Materials database: MATDB-like format
f) Fasteners database: FASTDB-like format
g) Other design tools: via native COB instance format or STEP Part 21

• COB-based analysis template libraries with various forms2

• COB editing and navigation/browsing tools
• Usage of Mathematica as the main CORBA-wrapped constraint solver

Tools of other types and vendors can be added in a similar manner [Peak et al. 1997, 1998].

5) Working development test cases & tutorial examples demonstrating the above capabilities
via formula- and FEA-based analyses:
a) Back plate
b) Flap link (Figure 12-Figure 17) – This illustrates key CBAM/MRA characteristics,

including usage of library ABBs, associativity with an APM (and CAD links),
multifidelity analyses, multi-mode analyses, and black box wrapping of a general purpose
external tool.

                                                     
2 XaiTools currently supports cos (cob schema) and coi (cob instance) models (as syntax v2.1 text files).  It
also supports reading/writing STEP Part 21 and STEP EXPRESS files, respectively, and writing HTML
formatted versions.  Graphical editing & interaction tools for constraint schematics are planned.
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6) Working aerospace case studies relevant to Boeing (Figure 18):
a) Bike frame APM-based CATIA linking (Figure 19).
b) Reusable lug and fitting template libraries based on design guides (after BDM 6630 and

D6-81766) (Figure 20-Figure 25, Figure 29-Figure 30). These were created using the
MRA routinization methodology (Figure 3).  We showed how such capabilities can be
implemented as:
i) COB wrappings around existing tools like IAS (black box approach), or
ii) Decomposed COB hierarchies for improved modularity and multidirectionality.

c) Flap support inboard beam (a.k.a. “bike frame”) utilizing these templates (Figure 26-
Figure 28, Figure 31).

7) Collaboration with PSI team members and participation in the following meetings &
workshops:

June 1997 – San Diego (STEP meeting), Seattle Feb 1998 – Seattle
Sept 1997 – Seattle July 1998 – Seattle (via teleconference)
Oct 1997 – Stockholm (at EuroSTEP) and

– Florence (STEP meeting)
Sept 1998 – Seattle

Dec 1997 – Seattle Dec 1998 – Seattle

8) Proposal outline for 1999 effort
Proposed next steps are outlined in recently submitted memos and include the following thrusts:

• Extend lug & fitting COBs and related interfaces for pilot production usage.
• Develop next generation CATIA CAD idealization associativity (e.g., improved tagging

via automated morphing techniques).
• Develop other needed architecture facets identified above (Figure 32):

• Advanced pullable views by combining XML and COB techniques.
• Inter-analysis associativity and related conditions/loads/requirements.

3 Summary
In Phase 1 GIT has delivered the constrained object (COB) information modeling language for
next-generation stress analysis templates.  Key advances beyond current practice include the
capture of explicit design-analysis associativity (and related idealizations), increased modularity,
and increased reusability.  COBs form the basis for the extended multi-representation architecture
(MRA) for analysis integration.  The MRA focuses on associativity and computation coordination
in environments with a diversity of analysis disciplines, analysis fidelity, product types, and
computing tools.  Another MRA distinctive is using COBs to represent and manage complex
constraint networks that naturally underlie engineering design analysis.

Examples relevant to the aerospace industry have been demonstrated, including lug and fitting
analyses with links to detailed design parameters in CATIA CAD models.  Multifidelity analyses
and COB-based CATIA-to-FEA scenarios have also been presented.

It is anticipated that this work will contribute key components to the overall next-generation
analysis tool architecture.  The potential impact of explicit design-analysis associativity cannot be
overemphasized, as the traceability of this idealization knowledge is largely lost today.

Future work has been proposed to field test lug and fitting analysis capabilities based on an MRA
subset of the overall PSI architecture.  Other proposed thrusts include capturing inter-analysis
associativity, and combining XML and COB techniques to enable advanced pullable views.
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4 References

4.1 Boeing PSI Project
H. Martin Prather, Jr. and Raymond A. Amador (Nov. 17, 1997) Product Simulation Integration for
Structures. 1997 MacNeal-Schwendler Corp. Aerospace Users Conference, New Port Beach CA,

Overviews Boeing Product Simulation Integration project (PSI).

4.2 GIT Analysis Integration
The following papers overview GIT EIS Lab X-analysis integration (XAI) research, with applications
including electronic packaging thermomechanical analysis.  Most publications are accessible on the web at
http://eislab.gatech.edu/ along with project information.

Other publications are planned describing newer developments (e.g., CBAMs) and applications (e.g.,
aerospace structural analysis).  Advances beyond the main MRA paper [Peak et al. 1998] and TIGER-era
capabilities [Peak et al. 1997, 1999] include:
• APMs – Combine & filter design information from multiple sources and add idealizations that are

reusable in potentially many analyses (typically in CBAMs).  Recognizes that the full design-oriented
PM is not typically required for analysis, thus simplifying APM management.

• CBAMs (context-based analysis models) – Generalizes PBAMs by adding associativity with the
context of why an analysis is being done, including objectives (e.g., determining margin of safety).
PBAMs focused on associativity between design objects (APM entities) and product-independent
analysis objects (ABBs).  Other context elements under development include the behavior modes being
analyzed and boundary condition objects (loads, conditions, and links to next-higher analyses).

• Lexical COBs – Generalizes the ‘ABB structure’ as the primary computable lexical representation for
constraint graphs underlying APMs, ABBs, and CBAMs.

• Mechanical/aerospace part applications – Demonstrates MRA product domain independence through
examples beyond earlier electronic packaging applications.  Utilizes techniques for integrating APMs
with general geometric CAD models such as CATIA models [Chandrasekhar, 1999].

• XaiTools – next-generation Java-based MRA toolkit (beyond Smalltalk-based DaiTools).  Includes:
• Mathematica-based constraint solver – Manages basic associativity relations (typically equalities)

as well as complex idealization and analysis relations.  Viewed as a key step towards a subsolver
architecture in which solution tools like Mathematica would be SMM-based subsolvers.

• CORBA-based wrappers - Next-generation means for multi-platform distributed computing (e.g.,
it is now used to wrap Mathematica as the main shared constraint solver; other anticipated
applications include SMMs, design tools, and persistent data storage).

4.2.1 The Multi-Representation Architecture (MRA) Technique
Peak, R. S.; Scholand, A. J.; Tamburini D. R.; Fulton, R. E. (to appear 1999) Towards the Routinization of
Engineering Analysis to Support Product Design. Invited Paper for Special Issue: Advanced Product Data
Management Supporting Product Life-Cycle Activities, Intl. J. Computer Applications in Technology, Vol.
12, No. 1.

Overviews the routinization methodology for creating highly automated product data-driven analysis modules that
can be implemented in the MRA (c. 1997).

Peak, R. S.; Fulton, R. E.; Nishigaki, I.; Okamoto, N. (1998) Integrating Engineering Design and Analysis
Using a Multi- Representation Approach. Engineering with Computers, Vol. 14 No. 2, 93-114.

Introduces the multi-representation architecture (MRA) which places product models (PMs), PBAMs, ABBs, and
solution method models (SMMs) in a broader, interdependent context. Presents the explicit representation of
design-analysis associativity, and proposes a routine analysis automation methodology (c. 1995). APMs, CBAMs,
and lexical COBs are newer MRA concepts described elsewhere.

Peak, R. S. (1993) Product Model-Based Analytical Models (PBAMs): A New Representation of
Engineering Analysis Models. Doctoral Thesis, Georgia Institute of Technology, Atlanta.

Focuses on the PBAM representation (including the ABB representation and constraint schematics) and
automation of routine analysis. Includes example applications to solder joint analysis, and defines objectives for
analysis model representations. Contains a starter set of ABBs. Discusses PMs and a precursor to SMMs, but does
not explicitly define the MRA itself.

http://eislab.gatech.edu/
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4.2.1.1 Constrained Objects (COBs)
Wilson, M. W. (expected 1999), The Constrained Object (COB) Representation for Engineering Analysis
Integration , Masters Thesis, Georgia Institute of Technology, Atlanta.

4.2.1.2 Analyzable Product Model (APM)
Chandrasekhar, A. (expected 1999), Integrating APMs with Geometric CAD Models, Masters Thesis,
Georgia Institute of Technology, Atlanta.
Tamburini, D. R (expected 1999), The Analyzable Product Model (APM) Representation , Doctoral Thesis,
Georgia Institute of Technology, Atlanta.
Tamburini, D. R., Peak, R. S., Fulton R. E. (1997) Driving PWA Thermomechanical Analysis from STEP
AP210 Product Models, CAE/CAD and Thermal Management Issues in Electronic Systems, EEP-Vol.
23/HTD-Vol. 356, Agonafer, D., et al., eds., ASME Intl. Mech. Engr. Congress & Expo., Dallas, 33-45.

Includes slides overviewing how APM technique was used with STEP AP210 in TIGER.
Tamburini, D. R.; Peak, R. S.; Fulton, R. E. (1996) Populating Product Data for Engineering Analysis with
Applications to Printed Wiring Assemblies. Application of CAE/CAD to Electronic Systems, EEP-Vol.18,
Agonafer, D., et al., eds., 1996 ASME Intl. Mech. Engr. Congress &amp; Expo., Atlanta, 33-46.

Introduces the analyzable product model (APM) as a refined type of product model (PM) aimed specifically at
supporting analysis. Describes how to populate APMs from design tool data via STEP. This technique was later
used in TIGER [Peak et al. 1997] to drive analyses from STEP AP210 PWA product models.

4.2.2 Parametric, Modular Finite Element Modeling
Zhou, W. X. (1997), Modularized & Parametric Modeling Methodology for Concurrent Mechanical Design
of Electronic Packaging , Doctoral Thesis, Georgia Institute of Technology, Atlanta.

Defines technique for taking advantage of product-specific knowledge to create complex finite element models
that are not practical with typical automeshing methods.

Zhou, W. X.; Hsiung, C. H.; Fulton, R. E.; Yin, X. F.; Yeh, C. P.; Wyatt, K. (1997) CAD-Based Analysis
Tools for Electronic Packaging Design (A New Modeling Methodology for a Virtual Development
Environment). InterPACK’97, Kohala Coast, Hawaii.

Overview of [Zhou, 1997] as well as interactive finite element models.

4.2.3 Applications
Peak, R. S.; Fulton, R. E.; Sitaraman, S. K. (1997) Thermomechanical CAD/CAE Integration in the TIGER
PWA Toolset. InterPACK’97, Kohala Coast, Hawaii.

Shows how MRA techniques were applied in the DARPA-sponsored TIGER Program. Includes PWA and PWB
thermomechanical analyses driven by STEP AP210 product models that originated in the Mentor Graphics
BoardStation layout tool.

Scholand, A. J.; Peak, R. S.; Fulton, R. E. (1997) The Engineering Service Bureau - Empowering SMEs to
Improve Collaboratively Developed Products. CALS Expo USA, Orlando, Track 2, Session 4.

Overviews the Internet-based engineering service bureau (ESB) paradigm initiated in the DARPA-sponsored
TIGER Program.  Describes services ranging from self-serve to full-serve, with a focus on highly automated
product data driven analysis.  Includes ESB setup and user guidelines.

Peak, R. S.; Fulton, R. E. (1993b) Automating Routine Analysis in Electronic Packaging Using Product
Model-Based Analytical Models (PBAMs), Part II: Solder Joint Fatigue Case Studies. Paper 93-WA/EEP-
24, ASME Winter Annual Meeting, New Orleans.

Condensed version of solder joint analysis case studies in [Peak, 1993]. Illustrates automated routine analysis,
mixed formula-based and FEA-based analysis models, multidirectional analysis, and capabilities of constraint
schematic notation.

4.2.4 Tools
Wilson, M. W., Peak, R. S., Tamburini, D. R. (1999) XaiTools Users Guide. EIS Lab, Georgia Institute of
Technology, Atlanta.  http://eislab.gatech.edu/

XaiTools™ is Java-based toolkit for X-analysis integration based on the MRA. This document gives basic usage
instructions.  Other documents describing the general architecture, examples, tutorials, COB creation guidelines,
and developer guidelines are planned.

http://eislab.gatech.edu/


8

5 Figures
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3 The boundary condition object and mode portions of CBAMs are work-in-process concepts.
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4 Asterisks (*) indicate items not available as working prototype examples (all others are working examples)
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Figure 12  Flexible Design-Analysis Integration Using MRA COBs: Tutorial Example “flap link” 4:
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Figure 13 Representing a Flap Link Analysis as a CBAM: Linkage Extensional Model

COB link_extensional_model SUBTYPE_OF link_analysis_model;
  DESCRIPTION
    "Represents 1D formula-based extensional model.";
  ANALYSIS_CONTEXT
    PART_FEATURE
     link : flap_link
    BOUNDARY_CONDITION_OBJECTS
     associated_condition : condition;
    MODE
     "tension";
    OBJECTIVES
     stress_mos_model : margin_of_safety_model;
  ANALYSIS_SUBSYSTEMS */
    deformation_model : extensional_rod_isothermal;
 RELATIONS
   al1 : "<deformation_model.undeformed_length> == <link.effective_length>";
   al2 : "<deformation_model.area> == <link.shaft.critical_cross_section.basic.area>";
   al3 : "<deformation_model.material_model.youngs_modulus> == 

   <link.material.stress_strain_model.linear_elastic.youngs_modulus>";

   al4 : "<deformation_model.material_model.name> == <link.material.name>";
   al5 : "<deformation_model.force> == <associated_condition.reaction>";

   al6 : "<stress_mos_model.allowable> == <link.material.yield_stress>";
   al7 : "<stress_mos_model.determined> == <deformation_model.material_model.stress>";
END_COB;

Desired categorization of attributes is shown above (as manually inserted) to support pullable views.   
Categorization capabilities is a planned XaiTools extension.

Figure 14 COB Lexical Form for Linkage Extensional Model CBAM
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5 Asterisks (*) indicate items not available as working prototype examples (all others are working examples)
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Figure 26 Typical Strength Check Note (SCN):
 Bike Frame Bulkhead Fitting Analyses
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