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PREFACE

The current generation of CAD/CAM/CAE systems provides reliable, proven and
sophisticated solutions for engineering mechanical products. However, we at the
Engineering Information Systems Laboratory at the Georgia Institute of Technology believe
that more work is needed on inzegrating these tools. More specifically, our research efforts
focus on the integration issues that arise when information is shared between design and

analysis applications.

As a member of this team, my job was to focus on the “product model side” of the design-
analysis integration problem (see Figure 97-3) and propose a mechanism to model product
information in a way that is more amenable for analysis. This thesis introduces a new
representation of engineering products - termed Analyzable Product Model (APM) - aimed
at facilitating design-analysis integration. APMs provide a stepping stone between design and
analysis representations which absorbs much of the complexity that would be otherwise
passed to analysis applications, resulting in leaner and easier to maintain analysis applications.
This APM Representation complements the Multi-Representation Approach (MRA)
developed at the Georgia Institute of Technology by Drs. Russell S. Peak and Robert E.
Fulton (Peak 1993; Peak and Fulton 1993c; Peak, Fulton et al. 1998) (see Chapter 7) by
providing the product information required by their Product Model-Based Analysis Models
(PBAMs), thus filling the gap between design tools and PBAMs. Together, the APM
Representation and the MRA provide a highly modular and flexible design-analysis

architecture.

This research benefited enormously from a significant amount of exposure to real-world
applications during the projects in which I had the privilege to participate. In many
occasions, the issues that arose in these projects steered the direction of my research. These
projects also provided me with invaluable test cases with which I was able to test the validity

and applicability of the concepts I was developing.
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During my research I produced a significant amount of prototyping code. In writing this
thesis, I tried to achieve a balance between presenting the concepts in a formal and generic
manner and providing implementation examples and pieces of actual code. Although I made
it a point not to stress coding too much, in several occasions I found it useful to show some
code to illustrate the concepts and provide a better idea of how they could be implemented.
I did not include, however, every single line of code I wrote for this research. For the
interested reader, in Chapter 64 I provide references to web pages in which the complete

code of the prototypes can be found.

This work, of course, does not provide a definitive solution to the problem of design-
analysis engineering. I hope, however, that it does provide an initial step in the right
direction. It is very rewarding to see that members of the EIS Lab team are currently
working on refining and enhancing the APM Representation (as summarized in Subsection

113), and exposing it to further testing in the projects they participate.

Organization of this thesis

This thesis is organized into nine chapters: Chapter 1 provides a general introduction to the
problem of design-analysis integration, heterogeneous transformations and idealizations.
Chapter 7 surveys some related research efforts in this area and identifies several gaps in the
current state of this field that require further attention. These two chapters establish the
groundwork for Chapter 27, which formally states the problem addressed by this research
and lists the objectives that drove the development of the Analyzable Product Model
Representation. Chapter 38 formally introduces the APM Representation. This is the core
chapter of this thesis, in which the theoretical contribution of this work is presented.
Chapter 64 describes a prototype implementation of the APM Representation developed by
the author for this work. Chapter 83 presents a series of test cases that utilize the prototype
implementation in real-world applications. Chapter 97 evaluates the results of Chapter 83 to
assert to what extent the APM Representation met the research objectives stated in Chapter
27. Chapter 110 recommends several extensions to this work aimed at overcoming the
limitations and unfulfilled objectives identified throughout the thesis. Chapter 114 wraps up

this work by providing some concluding remarks and thoughts.
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SUMMARY

Despite the number of sophisticated CAD/CAE tools available, collecting the product
information needed for engineering analysis often poses a significant challenge. Contributing
to this is the fact that there is rarely an integrated source of analysis information, since the
product development normally involves designers from several disciplines using a variety of
independent computing and manual systems. In addition, analysis models need idealized
product information, which may require significant simplification or transformation of the
design data. Some point-to-point solutions exist that integrate specific design and analysis
tools, but the knowledge used to combine and idealize design information for analysis

purposes is normally not captured in an explicit reusable and traceable form.

This thesis introduces a new representation of engineering products - termed Analyzable
Product Model (APM) - aimed at facilitating design-analysis integration. This representation
defines formal, generic, computer-interpretable constructs to create and manipulate analysis-
oriented views of engineering products. These views help bridge the semantic gap between
design and analysis representations, providing a unified perspective more suitable for analysis
which multiple analysis applications can share. They are obtained by merging design

representations from multiple sources and adding idealized information.

This thesis presents test cases and a prototype implementation used to validate the APM
Representation. These test cases, which come from the electronic packaging and aerospace

industries, utilize commercial CAD/CAE tools and STEP information exchange standatds.

As these test cases demonstrate, APMs provide a stepping stone between design and analysis
which absorbs much of the complexity that would be otherwise passed to analysis
applications, resulting in leaner analysis applications. Another key APM distinctive
demonstrated is the ability to formally represent the knowledge required to combine and
idealize design information for analysis. While such knowledge is critical to achieving

repeatable and automatable analysis, it is largely lost today.
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CHAPTER1

DESIGN-ANALYSIS INTEGRATION BACKGROUND

Design-Analysis Integration Problem Overview

During the computer-aided development of a product, the primary task of design engineers
is to create a detailed description of the product that contains enough information to
support the requirements of the different stages of its life cycle. At certain intermediate
points of the product development cycle, this design representation is used to drive a series
of engineering analyses that validate the design against several criteria and help predict the
physical behavior of the product under various conditions. In order to perform these
analyses, the design representation must be first idealized and transformed into some form
that admits mathematical evaluation. This form is normally referred to as ‘“analysis
representations”, “analysis models” or, more specifically, “product model-based analysis
models” (Peak, Fulton et al. 1998) (to differentiate them from generic analysis models, which
are not linked to any particular product). Computer programs called “analysis applications”
provide the necessary interfaces to enable user interaction with electronic forms of these
analysis models. The results of these engineering analyses are used to successively refine the
design representation. Figure 1-1 illustrates this design-idealize-analyze sequence using a

simple mechanical component (a linkage) as example.



Analysis Models

Truss Tension Model

L A

— E,A —

Idealizations

T , Linkage Tension Model
e ’ CaN=—="\i
s@ | =)
Real Product —

Fatigue Model

R R
4

Design/Computer
Representation

Figure 1-1: Design-Analysis Integration Example

Although both the design and the analysis representations described above are views of the
same product, they describe it at very different levels of semantic content, and obtaining the
latter from the first is generally a difficult task. Hence, design-analysis integration often turns
out to be a difficult proposition. The cutrent generation of CAD/CAM/CAE systems
provides very strong solutions for engineering mechanical products, but each does so with
proprietary technical capabilities, and worse, often with proprietary data formats not
accessible by other applications (Al-Timimi and MacKrell 1996). The unstructured
development of these systems over the years has made it difficult to integrate both the
systems themselves and the information they manipulate (Brooke, Pennington et al. 1995).
As a result, even though there is a large number of sophisticated computer aided engineering
tools available, the current status is that in general design and analysis software tools are not
compatible enough to exchange data directly - without cumbersome (manual or semi-
automatic) transformation (Kemper and Moerkotte 1994). In many cases, data needed by the
analysis models has to be manually retrieved and re-inputted in some other computer
application for analysis. In addition, due to the large syntactic and semantic gap between

design and analysis representations, some raw design information must undergo significant



transformation, simplification and/or idealization before being fed into the analysis models
on which the analysis applications are based (Armstrong 1994; Shephard, Korngold et al.
1990). This is usually a tedious, slow, and error-prone process that characterizes the

infamous “islands of automation”.

Added to these incompatibility problems is the fact that, in a real scenario, the development
of a product requires participation of designers from several disciplines who use a wide
variety of independent software systems. These multiple design applications generate a large
and complex aggregation of diverse design information, scattered across several data sets
with different, often proprietary, formats and data structures. As a result, there is rarely a
single, integrated source of analysis information readily available. Integrating the information
contained in these disjoint sources of design data requires a significant amount of
engineering knowledge. Moreover, this information is often both redundant and incomplete

for analysis purposes. Figure 1-2 illustrates this multiple design and analysis applications

scenario.
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Figure 1-2: Multiple Design and Analysis Applications Scenatio



Design-analysis integration is enjoying increasing attention because engineering design firms
are adopting the strategy of giving designers the tools needed to predict the performance of
a design, rather than just to define its dimensions (Deitz 1997). In other words, they are now
turning designers into analysts (to some degree). This of course imposes new requirements
for the developers of CAD/CAE systems, as they now have to provide tighter integration
between design and analysis functions. The ultimate goal is to enable designers to perform
analysis directly from their CAD tools (by making analysis functions available via the CAD

system’s user interface) thus reducing the time required to prepare a model for analysis.

Idealization and Synthesis

In engineering terms, to 7dealize is to construct an abstracted model of the real system that
will admit some form of mathematical analysis (Shigley and Mischke 1989). Most frequently,
idealization refers specifically to the transformations that are applied to the design
representation of a part, which is already an idealized version of the “real” or “physical” part
in that the design representation is a model of the typical actual part (as illustrated in Figure
1-1). Idealizations are applied to design information because most problems contain
complexities that render numerical simulation difficult or impossible to analyze. In addition,
it is usually neither feasible nor desirable to analyze in detail all aspects of a product because
of its inherent complexities. Thus, in practice, certain complexities can be simplified in order
to make numerical computation more efficient (or possible) and some redundancies can be
ignored without drastically affecting the accuracy of the analysis. Idealization techniques can
be applied to any of the following aspects of a physical system: geometry domain,
phenomena, boundary conditions, initial conditions, material properties or mathematical
equations (Finn, Grimson et al. 1992). As Finn points out, the major challenge to the
engineer is identifying the importance of different systems aspects, performing the
appropriate simplifications or idealizations and finally assessing the suitability of the resulting

model for analysis. Finn provides the following categorization of engineering idealizations':

! Finn distinguishes between simplifications and idealizations. In the list below, he considers the first six operations
simplifications and the last three idealizations. For the purposes of this discussion, a simplification will be considered as a
type of idealization.



Dimensional Reduction: involves reducing the degree of spatial analysis or time
analysis. Spatial analysis may involve reduction from 3-dimensional to 2-dimensional
or 1-dimensional analysis. Time analysis may involve reducing a transient analysis to a

quasi-static or steady state analysis.

Geometric Symmetries: involve removing redundant domains by identifying spatial

symmetries and applying compensatory boundary conditions.

Feature Removal: involves removing some engineering feature that is not expected
to contribute significantly to the overall analysis results (for example a small hole or a

fin).

Domain Alteration: involves changing some aspect of the spatial domain so that the

analysis is simplified (for example, modeling a thin aerofoil as a thin plate).

Phenomenon Removal: involves the removal from analysis of complete phenomena
based on the decision to ignore the effect of that phenomenon (for example, ignoring

stress effects within the physical system).

Phenomenon Reduction: applies to situations where a multi-component
phenomenon exists and a particular component is removed is removed because its
significance is judged to be of minor importance (for example, removing radiation

analysis from a heat transfer problem).

Phenomenon Idealizations: involve the use of mathematical expressions to describe
the system phenomena. For example, in fluid analysis, a number of mathematical
equation models are available to solve for flow analysis: parallel flow can be modeled

using the full Navier Stokes equations or a Couette flow model.

Boundary Condition Idealizations: may involve applying a mathematical equation
to model a boundary condition that does not perfectly represent the physical boundary
conditions. For example, in heat transfer modeling, a non-ideal surface may be

modeled as a black body or gray body surface.



® Material Idealizations: generally involve the use of idealized material laws to model
some complex material behavior. For example, modeling an expected non-linear

material response using a linear approximation function.

Synthesis is the opposite of idealization; the act of “appearing as a material form or taking
substantial shape”, that is, going from an abstract or ideal representation to a physical
representation. Effectively, synthesis is performed in three steps: the first is to decide on the
variables (primitive or complex) from the design representation of the part that are going to
be populated with values. The second step is to assign values to these variables. The third
step is to use this populated design representation to actually create or manufacture the
physical part’. The assignment of values to the design variables is normally based on the
results of engineering analyses, but it could possibly be based on rules-of-thumb, experience
or even arbitrary judgement. Synthesis is a more complex process than idealization because
the design representation of the product is richer than the abstract representation, and
therefore it may be necessary to add information (such as additional constraints or pre-
determined design configurations) in order to go from the abstract to the physical.
Additionally, product-analysis transformations that have a closed-form solution in one
direction (for instance, a trelation of the form A, = 0( P, P, ), where A, is an idealized
variable, and P, and P, are two product variables), may not have one if, for example, we need

to solve for one of the product variables, say P,.

The design representation of a product is expressed exclusively in terms of product variables,
whereas analysis representations are expressed as a combination of product variables and
idealized variables. Product and idealized variables are related by product idealization
relations (Peak, Fulton et al. 1998). When these product idealization relations are used to
obtain idealized variables from product variables (that is, in their “forward” form) they are
called idealizations. When they are used in the “reverse” direction, that is, to obtain product
variables from idealized variables, they are called synthesis relations. In the context of
design-analysis integration, idealization and synthesis characterize the bi-directional nature of
the design-analysis process: idealization is used when the design description of the product is
abstracted to prepare it for analysis, whereas synthesis is used when the results of the

analyses are used to make changes in the design (as in optimization).

2 In this thesis, the focus will be on the first two steps.



Homogeneous and Heterogeneous Data Exchange

Most of the discussions about data exchange between engineering systems focus on
homogeneous data exchange cases. In general, homogeneous data exchanges occur between
systems that are similar in scope and semantics, hence mostly requiring syntactic translation
of the data. Homogeneous data exchanges normally take place between systems that have
(Al-Timimi and MacKrell 1996):

® The same data model: for example, between two solid modelers from the same vendor
or from two solid modelers from different vendors exchanging data through some

standard data exchange model such as STEP AP203 (Appendix A).

e Different data models but same level of richness, scope and semantics: there is
normally a direct mapping from one model to the other that can potentially be
automated. For example, when two solid modelers from different vendors exchange
information about 2D circles; one solid modeler may represent 2D circles using three
points and the other using a point and a radius. This type of data exchange is mostly a
syntactic translation process that requires a customized translator between each pair of

systems.

e Data models with different levels of richness but same scope and semantics: naturally,
in this case, the data exchange goes most easily from the system with the higher level
of richness to the system with the lower level of richness. For example, from a solid
modeler to a surface or wireframe modeler. This is also mostly a syntactic translation

process that can be automated.

However, one of the main differentiating characteristics of the exchange of information
between design and analysis is its heterogeneons nature. This heterogeneity is caused by the
large gap in scope and semantics that exists between design and analysis representations
(Peak 1993), which requires a syntactic and a semantic transformation of the data being
exchanged. For example, as illustrated in Figure 1-3, an Electrical CAD (E/CAD) system
and a finite element analysis system may describe the same Printed Wiring Assembly (PWA)
from very different points of view: the first describes it in PWA-domain terms (components,

traces, layers, pads, etc.) and the second in terms of nodes and elements.
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Figure 1-3: Homogeneous and Heterogeneous Data Exchange

Although the level of detail required by analysis models is usually lower than the one
required by design models, an analysis model is more than just a simplified design model. In
addition to simplified design information, analysis models require idealized information
about the product that is not normally contained in design representations. Therefore, rules
defining how this additional idealized information is merged with design information have to

be supplied as part of the mapping specification.

In addition, this transformation process may be dependent on the values of the attributes in
the design model. To illustrate this, consider the example of a geometric model of a plate
with a hole that is being fed into a stress analysis application. The mapping between the
geometric representation of the plate and its analysis representation may specify that the hole
may be ignored if the ratio between its diameter and the length of the plate is smaller than
certain value. This conditional information also needs to be captured explicitly in order to

enable the exchange of data.

Finally, another characteristic of heterogeneous transformations between design and analysis
representations that makes design-analysis integration especially challenging is that these

transformations can take place at different levels of fidelity. For example, the heterogeneous



transformation between a CAD model and a FEA model can occur at two levels of fidelity:
one if the FEA model is 2-D and another if it is 3-D. The term Mu/ti-Fidelity Heterogeneous

Transformations can be used to convey this notion.

Information Requirements of Design-Analysis Integration

Design-analysis integration has some unique characteristics that impose some special

requirements on the data exchange. Among these requirements are:

Multiple sources of data: data needed for analysis usually spans multiple design
repositories and is generally stored in a variety of formats. This is especially true for
multidisciplinary products like PWAs that involve E/CAD as well as M/CAD tools.
For example, the analysis of PWB bending requires data about the layout of the PWB
(created with an E/CAD tool), data about its detailed geometry (created with a
M/CAD tool), and data about the manufacturing process (process temperatures,
forces, etc., created by a process/factory definition tool). Another example is the finite-
element analysis of a mechanical component, which requires information about the
geometry of the component — normally created with a solid modeler — and about the
properties of the material of which it is made — created and maintained in a materials
data management system. Integrating the information from multiple sources requires a
significant amount of engineering knowledge, which needs to be captured explicitly if

the data exchange between design and analysis is to be automated.

Reusable product idealization relations: as discussed above, product idealization
relations relate detailed, design-oriented attributes with idealized, analysis-oriented
attributes (Peak, Fulton et al. 1998). As shown in Figure 1-4, multiple product
idealizations may be applied to a given product, and a given product idealization may
be used potentially by more than one analysis application. These product idealization
relations also need to be captured explicitly in order to automate the data exchange
between design and analysis. These relations may be relatively complex, involving non-

linear expressions, transcendental functions, conditional statements, iterations, etc.
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Multi-directional product idealization relations: the input and outputs in a given
product idealization relation may vary according to the particular design-analysis
scenario. Figure 1-5 shows three common situations involving product idealization
relation I and analysis model A (used to calculate the axial stress I" of the plate when
an axial load P is applied). In this figure, attributes width, thickness and d, (the width,
thickness, and diameter of hole 1 of the plate shown on the left side of the figure) are
design attributes and attribute A, (the critical area of the plate) is an idealized attribute.
In the first situation — termed design checking — values for width (20 in), thickness
(0.25 in) and d, (7.5 in) are entered as inputs to relation I to obtain the value of A
(3.125 in®). The obtained value of A and a value of P (100 Ib) are entered to the

analysis model A to obtain the axial stress I' (32 psi). In the second situation — termed

iterative synthesis — desired analysis results are entered first (I' = 30 psi when P = 100
Ib) in order to obtain a target value of A (3.33 in”). Then relation I is used to iterate

over the value of d; until the target value for A is reached, resulting in a value d, =

10



width

0.66 in. In the third situation — termed synzhesis — the desired analysis results are also

entered first, but this time relation I is used “in reverse” to obtain the value of d,

(without having to iterate). Note that in this last case, relation I is used in a different

direction than in the first case (that is, the input/output combination is different).
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Figure 1-5: Multi-directional Product Idealization Relations

Unavailable Analysis Data: design data often must be complemented with

additional data to perform analysis. Some analyses may need very specific information

that is not being supplied by any of the design tools or that is not readily available in

any form. For example, a PWB warpage analysis may need detailed information about

the layup of the board. However, this information is not provided by the electrical

engineer that designs the PWA because he or she is not concerned with that level of

detail.

Simplifications: much of the data representing the design of the complete product is

not used at all in the analysis (Mortis, Mitchell et al. 1992). A common example of this

11




is geometry; analysis models rarely need all the detailed information used by geometric
modelers to represent the geometry of the product and therefore normally use a

simplified version of the real geometry.

Data complexity: engineering analyses tend to be “information-hungry”; they
normally demand a large number of #ypes of data - complicatedly interconnected - as

opposed to a large number of instances of each type of data.

Variety of types and multi-fidelity of analyses: in most cases (Figure 1-4), each
phenomenon requires a separate analysis application to predict its effects (Brooke,
Pennington et al. 1995). However, the problem is not only the ##mber of analyses that
need to be supported but also the variezy of analyses and their information
requirements (for example, structural versus thermal analyses). Moreover, a given
analysis may be performed using several solution methods (e.g., formula-based, finite-
element analysis, etc.) and/or at multiple levels of fidelity for the same phenomenon,
the information requirements varying from one solution to another. The choice of a
particular combination of analysis model and solution method will depend on the level
of accuracy desired and the computer resources available, keeping in mind that, in
general, there is a tradeoff between the level of fidelity used and the computation cost.
For example, a rough analysis model may be sufficient during early design, leaving the
usage of an analysis model with a higher level of fidelity for when more accurate results

are needed.

Multiple Levels of Product Structure: the same design model may be viewed,
for analysis purposes, at different levels of detail. For example, Figure 1-6 illustrates
two views of the same assembly: one focusing on a particular feature and the other

utilizing the entire assembly.

12
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Design-Analysis Integration Using Neutral Product Data Exchange Standards

As discussed in Section 2, multiple design applications generate data about the product and
store it in different, often proprietary, formats and data structures. A step forward towards
facilitating design-analysis integration is the utilization of neutral exchange formats. In this
approach, as shown in Figure 1-7, the data of each design application is translated to a
neutral (standard) format. Analysis applications read the data from these standard formats
without regard of the application that generated this data, eliminating the need for point-to-
point translators and updating the analysis applications each time a new release of a design

system is released.
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Figure 1-7: Design-Analysis Integration Using Neutral Data Exchange Standards

Perhaps the largest and most important present effort to develop neutral representations of
product data is the Standard for the Exchange of Product Model Data (STEP — officially
known as ISO 10303). Appendix A briefly overviews the STEP standard and explains the
basic concepts that will be used in this thesis. For more comprehensive discussions on STEP
the reader is referred to (Al-Timimi and MacKrell 1996; Hardwick 1994; ISO 10303-1 1994,
Laurance 1994; Owen 1993). However, this approach alone is not sufficient due to the

heterogeneous nature of CAD-CAE transformations (Figure 1-3).
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CHAPTER 2

RELATED WORK

This chapter overviews several research activities in the area of design-analysis integration.
The common objective of the works included in this survey is to provide some mechanism
for translating or transforming product data from one representation to another, in order to
support the needs of multiple, integrated computer-aided applications. Of particular
significance to this thesis are those works that focus on transforming and idealizing product
data to support engineering analysis, thus enabling design-analysis integration. Some of the
projects overviewed here, however, do not specifically address the exchange of information
between design and analysis representations but are included anyway because they provide
valuable insight as to the available mechanisms to exchange data between representations in

general.

This survey is grouped into three subsections: Subsection 8 overviews the design-analysis
integration research activity at the Engineering Information Systems Laboratory (EIS Lab) in
the George W. Woodruff School of Mechanical Engineering of the Georgia Institute of
Technology, which includes some of the preliminary research that lead to the development
of the concepts presented in this thesis; Subsection 14 overviews several related activities
performed by other research groups; and Subsection 22 presents several design-analysis
integration works involving STEP and overviews the engineering analysis standardization

activities currently being performed by the international standardization community.

Design-Analysis Integration Research at the Engineering Information Systems
Laboratory

The Georgia Tech EIS Lab (of which the author is a member) has been conducting research
and participating in several industrial projects on design-analysis integration for several years.

This section overviews some of these research efforts which are closely related to this thesis.

15



The Multi-Representation Architecture (MRA)

Peak (1993; 1993a; 1993b; 1993c; 1998) developed the multi-representation architecture
(MRA, Figure 7-1), a design-analysis integration strategy that views CAD/CAE integration
as an information-intensive mapping between design models and analysis models. Peak
argues that the gap between design and analysis models is too large for a single general
integration bridge, and therefore divides the MRA into four information representations that
act as stepping stones between the design and analysis tool extremes. These four information
representations are: solution method models (SMMs), analysis building blocks (ABBs),
product models (PMs), and product model-based analysis models (PBAM:s).

Focus of this thesis Multi-Representation Architecture (MRA)

(2) Product Model-Based Analysis Model (PBAM)

i ! (3) Analysis Building Block
APM ; i
| i @ Solution
| ! Method Model
. | PBAM ABB
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: ! PM ™ ABB ! Age Fsmm
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! [ pwe [ ] Al PWB body 2
! Solder Joint T Solder Joit :
APM_ ...... R > A ey A
Population +____________{ __________3u
(mappings) Y Y
Design Tools : Analysis Tools
APM

Usage

Figure 7-1: The Multi-Representation Architecture for Design-Analysis Integration

On the right extreme of the MRA (Figure 7-1) are solution method models (SMMs)
representing analysis models in relatively low-level, solution-specific form. SMMs combine
solution tool inputs, outputs and control into a single information entity (an object) to
facilitate automated solution tools access and results retrieval. SMMs are object-oriented
wrappers around solution tools (e.g., FEA systems) that utilize an agent-based framework to

obtain analysis results in a highly automated manner. Analysis building blocks (ABBs)
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represent engineering analysis concepts in a manner that is largely independent of product
application and solution method. ABBs obtain results by generating SMMs through
transformations (labeled ,u5'Wq\n) that are based on solution method considerations. Product
Models (PMs, on the left extreme) represent detailed, design-oriented product information.
A PM is considered the master description of a product, which supplies information to other
life cycle tasks, including engineering analysis and manufacturing. To enable usage by
potentially many analysis applications, PMs in the MRA go beyond their traditional role and
support idealizations that relate detailed, design-oriented attributes with simplified, analysis-
oriented attributes. Finally, product model-based analysis models (PBAMs) contain linkages
(labeled X app) that represent design-analysis associativity between PMs and ABBs. These
associativity linkages indicate the usage of idealizations for a particular analysis application.
PBAMs have been used to create catalogs of ready-to-use analysis modules for applications
such as solder joint deformation and fatigue, PWB warpage, and plated-through holes (Peak
1993; Peak and Fulton 1993b; Peak, Scholand et al. 1996).

From the MRA viewpoint, providing solutions to the design-analysis integration problem
involves defining these four representations (SMMs, ABBs, PMs and PBAMs) and two inter-
representation mappings (ypsPauns a0d py@ass). The MRA achieves flexibility by supporting
different solution tools and design tools, and by accommodating analysis models of diverse

discipline, complexity and solution method.

Cimtalay (1996) introduces an optimization technique closely integrated with the MRA. In
this technique, modular software entities called opzimization agents use the analysis results
obtained by PBAMs for design optimization, by plugging them into the objective and/or
constraint functions of its internal optimization model and obtaining new design variables
needed to reduce the objective function. These new design variables are fed back into the
product model and the process is repeated until the objective function value converges. This
technique enables a closed-loop process that improves designs by meeting some selected
criteria and constraints. The designer can choose the proper optimization agent based on the
complexity of the analysis, types of models and tool availability. The paper provides more

details on how optimization agents are integrated with PBAMs and product models.
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The Analysis-Oriented Product Model (AOPM)

In his MRA work, Peak focused on developing a mechanism for extracting and transforming
data from an integrated product database in order to perform some engineering analyses. In
other words, he focused mainly on the PBAM/ABB/SMM components of the MRA. He
describes how PBAMs use product information and idealizations supported by product
models and points outs that, to enable usage by potentially many analysis applications,
product models in the MRA must go beyond their traditional role and support idealizations.
However, he does not go into further detail on how these product models are created and
populated with data generated by different design tools. In his prototypes, this product
database was created and populated manually, assuming emerging standards like STEP

would enable automated production of similar databases.

This thesis complements the MRA work by focusing on the Product Model component of
the architecture. Hence, the MRA provided a contextual framework for the development of
the concepts presented in this thesis. The first paper in the evolution of these concepts was
(Tamburini, Peak et al. 1996), in which the author introduces for the first time the idea of an
integrated, object-oriented representation that is populated with product data coming from
several heterogeneous design sources and provides a single source of information to support
a suite of related engineering analyses. This representation - named Analysis-Oriented
Product Model (AOPM) - eventually evolved into the Analyzable Product Model (APM)
presented in this thesis. The AOPM was defined as an abstracted »7ew of the design-oriented

product data that is more “appropriate” for engineering analysis in that:

e It contains entities whose names, attributes and structure are more suitable for use by

analysis models;

e [t contains mostly data that is used by the analysis models, which is a subset of all the

data generated by the design tools; and

e More importantly, it supports idealizations of the design data that can be shared by

multiple analysis models.

The utilization of an AOPM - and the technique used to populate it - were demonstrated in

this paper with a simple test case involving thermomechanical analysis of electrical
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components. As shown in Figure 7-2, this test case consisted of a simple component
extensional analysis performed with data coming from two hypothetical applications: an
E/CAD application, used to define electrical components and their geometry, and a Material
Definition application, used to populate a database of material properties. The purpose of
the analysis was to determine the change in length of an electrical component due to a

change in temperature.

Design Analysis
Representations Representation
Electrical

Component Data

Component Elongation

IEI’ Analysis

LT 1] Analysis-Oriented Product Model
le | e
y |‘ LC rl ALC

| component model (rod)l |_
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Material hil E.o \?j\;v = a, 1.7, x
Properties ﬁ e

ALC = ac( Tc - To) Lc
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Figure 7-2: Component Extensional Analysis Test Case

The AOPM of this case was defined using the EXPRESS data modeling language (Appendix
A). The corresponding (partial) EXPRESS-G diagram is shown in Figure 7-3. This AOPM
defined entities such as resistors, integrated circuits, and electrical packages as well as their
attributes (such as the electrical component’s part number and the resistor’s base material). It
also included idealized attributes required by the component elongation analysis such as the
electrical component’s primary structural material and the electrical package’s bounding box
length (indicated with asterisks in the EXPRESS-G diagram). The operations needed to
calculate the values of these idealized attributes were defined as part of the definition of the
AOPM as EXPRESS WHERE rules.
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Figure 7-3: AOPM for the Component Extensional Analysis Test Case (partial)

Next, the mappings between the two design representations and the AOPM were defined.
These mappings, shown graphically in Figure 7-4, define how the values of the attributes in
the AOPM are computed from values in the two design representations. Idealized attributes
are left empty during this mapping, as they will be calculated on demand when they are

required by the analysis.
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Figure 7-4: Mappings between the Design Representations and the AOPM
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Figure 7-5 illustrates how the information in the AOPM is linked to the analysis variables of

a particular type of analysis model (that is, how the analysis model #ses the AOPM). For
example, the bounding box length attribute (an idealized attribute of the AOPM) is linked to

the analysis variable L of the elementary rod analysis model (linkage ®,), and the coefficient

of thermal expansion of the primary structural material (another idealized attribute) is linked

to the analysis variable o (linkage @,).

AOPM

I, : primary structural material <

Electrical Component

hil

PBAM Component Extensional Model
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Y
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| rod [ ]
AL=o (T-T,)L
0 (T-T.)

I', : bounding box length, L,

Figure 7-5: AOPM-Analysis Model Linkage
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The EXPRESS definitions of the entities in the AOPM and the idealizations they support
were implemented in C++ so that they could be used in the development of the analysis
application. As illustrated in Figure 7-6, each entity in the AOPM was implemented as a
C++ class, and the attributes of this entity as class variables of this class. The protocol of
this class consists of member functions to access and update the values of the attributes of
the entity as well as member functions that implement the WHERE rules and allow access to

the values of the idealized attributes.

Programming Interface (in C++)

class resistor {
private:

/I Member Variables
char *part_number[30];
. char *description[80];
AOPM Schema (in EXPRESS) package * two. Iead. package;
solid_material *primary_structural_material;

/ \ double magnitude;

double tolerance;
ENTITY RESISTOR

ber : STRING: double power_rating;
za”—’.“‘t'.“ eréTRING ’ solid_material base_material;
escription : ;

/I Declaration of Access Member Functions

package : two_lead_package; public:
primary_structural_material : solid_material; char * part_number(void);

magnitude : positive_real; char *description(void);
tolerance : positive_real; package *package(void);

power_rating : posi_tive_real;_ solid_material *primary_structural_material(void);
base_material : solid_material; double magnitude(void);

WHERE . o . double tolerance(void);
pit1 : primary_structural_material = base_material; double power_rating(void);
END_ENTITY;

solid_material *base_material(void);
\ j h

/I Definition of Access Member Functions
solid_material resistor:: primary_structural_material( void ) {

. . . i b terial );
In bold: idealization , reum(basematerial)

v)ther member function definitions... /

Figure 7-6: AOPM Implementation

For this test case, the analysis application was a simple C++ program that implemented a
formula-based extensional model using the classes defined in the AOPM. Figure 7-7 is a
screen shot of this program displaying the total strain and elongation values obtained for a

particular resistor and temperature variation.
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Figure 7-7: Component Extensional Analysis Application

The overall data flow of this test case is shown in Figure 7-8. This diagram shows how the

data generated by each of the design applications is translated into STEP, mapped into the

AOPM and, finally, used by the analysis application.

@ @ ®

@ ®

Design Translation Mapping AOPM Usage
Custom Standard
Components Components
Schema Schema
Mapping
Definition AOPM
components Translator components
E/CAD | —> ile —> 1 > 7 sep Analysis
Application
g Custom Standard Analyzable Componant
Materials Materials Mapping ) Product ; )
Schema Schema Database E):nsiat'.o n
(apd.step) nalysis
MATERIAL 3 materials 3 Translator 3 materials E I:D
DEFINITION file 2 .step H
AL,

Figure 7-8: Overall Data Flow of the Component Extensional Analysis Test Case
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Even though the structure of the data, idealizations and analysis model of this test case were
relatively simple, this test case helped introduce and test the preliminary AOPM ideas: how
to populate an AOPM, how to support idealizations and how an AOPM is used by analysis
applications. The next step was to test these concepts in a more realistic scenario, using a
STEP Application Protocol as the schema for the design data, more complex idealizations
and more realistic design and analysis applications. This was accomplished during the
DARPA-sponsored project TIGER (Team Integrated Electronic Response) (EIS Lab 1997,
Peak, Fulton et al. 1997; Scholand, Peak et al. 1997; SCRA 1997; Tamburini, Peak et al.
1997) described next.

Team Integrated Electronic Response (TIGER) Project

The goal of the TIGER project was to demonstrate a collaborative design and
manufacturing scenario in which a small manufacturing enterprise (SME) exchanged design
information with the prime contractor early in the design process, thus reducing the
iterations necessary to produce a successful design. For this purpose, a suite of design,
manufacturing, and communications tools integrated across the Internet was made available
to the product development team. The domain demonstrated was the design, fabrication,

and assembly of printed wiring boards (PWBs) and printed wiring assemblies (PWAs).

In the TIGER scenatio, a PWA designer generated PWA/B design information and sent it
to a PWB manufacturer in STEP AP210 format. When the PWB manufacturer received this
file, he uploaded it to an Internet-based engineering service bureau over the Internet
(Scholand et al. 1997) that provided a variety of design and analysis services including
design-for-manufacturability (DFM) and thermomechanical analysis. These services were
integrated in an analysis environment developed for TIGER called DaiTools-PW.A/ B (Peak
et al. 1997). Once the AP210 file was uploaded to the engineering service bureau, the PWB
manufacturer invoked - from DaiTools’ interface - a tool called PWB Layup Design Tool
(Figure 7-9). He used this tool to specify the detailed layup of the PWB by selecting specific
laminates, prepregs, and copper foils that physically realized the requirements specified by
the PWA designer in the AP210 model.
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Layer 1
Prepreg set 1 0.0084

Layers 2 and 3 0.013

Prepreg set 2 0.0084

Layer 4

Figure 7-9: TIGER PWB Layup Design Tool

As these layup details affect PWB thermomechanical behavior, the PWB manufacturer had
to perform some analyses to check the impact of his decisions. For this reason, he invoked
the Warpage Analysis Application (Figure 7-10) to assess the warpage undergone by the
board due to changes in temperature that occur during manufacturing. Two fidelities of
warpage analysis detail could be requested: a quick formula-based warpage analysis and an
FEA-based plane strain warpage analysis. The PWB manufacturer performed this design-
analysis iteration until he was satisfied with the layup. Other analyses modules offered by
DaiTools were a PWA deformation analysis (to asses the warpage of the board with the
components on it), a solder-joint deformation and fatigue analysis (to assess joint
deformation and fatigue life due to temperature changes on a component basis), and a
plated-through hole deformation module (to assess deformation inside plated-through holes

due to changes in temperature).
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Figure 7-10: PWB Layup Design and Analysis Cycle

The Analyzable Product Model (APM, Figure 7-11) provided the integration of information
needed to drive this design-analysis process. When the AP210 file was uploaded to the
engineering service bureau, DaiTools read it in and combined it with other information to
form the Analyzable Product Database (APD). The APD became the only source of

information required to support the analyses offered in DaiToo/s.
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Figure 7-11: TIGER Data Flow

In order to support the design-analysis scenario demonstrated in TIGER, the basic AOPM
developed for the Component Extensional Analysis test case discussed above had to be
significantly extended with new entities and idealizations. The analyses supported by TIGER
required more information about the electrical components (geometry, package types,
placement on the board, material) and the board (detailed layup, materials, geometry). The
new idealizations implemented were the total diagonal of the board, total thickness of the
board and coefficient of thermal bending (0t;) of the board. The first idealization (total
diagonal of the board) is computed considering an imaginary bounding rectangle
surrounding the outline of the board, and assuming the length of the diagonal of this
rectangle as the total diagonal of the board. The second idealization (total thickness of the
board) requires the detailed layup of the board to calculate the post-lamination thickness,
which takes into account the flow of epoxy material between the traces of the conductive

layers when the board is heated and subjected to pressure during lamination. Finally, the
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coefficient of thermal bending is a lumped material property of the total layup and is

calculated as a weighted sum of individual stratum properties.

The work done for the TIGER project helped to further develop the APM concept and test
the initial ideas with a realistic design-analysis example. The variety and complexity of the
analyses supported helped to gain more understanding about the general requirements of an
APM. Also, the utilization of a real STEP Application Protocol (AP210) as the source of
design information raised several fundamental problems such as how to add missing
information not contained in an AP but required for analysis, and how to coordinate and
map information spanning several STEP repositories. It also added the critical link to

commercial design tools such as Mentor Graphics.

The AOPM/APM work done until TIGER had one significant drawback: the code to access
the analyzable product model and the idealizations defined in it was specific to the test case,
in other words, it was ear/y-bound. Almost none of the prototype code done for TIGER
could have been reused for a test case involving, for example, aircraft structures. In addition,
idealizations were implemented manually by directly modifying the access methods of the
classes corresponding to entities in the product model. For example, recall the C++ example
from TIGER of Figure 7-6, in which the idealization to obtain the primary structural
material of a resistor is manually implemented as an access method of the resistor class. Also,
with this approach, a class method had to be written for each expected input/output

combination.

Product Simulation Integration (PSI) Structures Project

By the time of this writing, the concepts and techniques demonstrated in TIGER are being
extended and applied towards the Product Simulation Integration (PSI) Structures Project.
The PSI project is a multi-team, multi-year project conducted by The Boeing Commercial
Airplane Group in Seattle, Washington. The objective of the PSI project is to define and
enhance the processes, methods and tools to integrate structural product simulation and
analysis with structural product definition (Prather and Amador 1997). This includes
automated engineering analysis as an integral component of the product definition. The EIS
Lab team has been contributing to this effort since September of 1997 with the application

of its MRA/APM techniques in the airframe structutes, extending beyond the electronics
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domain explored in earlier work. Specifically, it is providing design-analysis associativity
techniques that are crucial to the true simulation integration the project wants to achieve
(Peak, Fulton et al. 1999).

Product Data-Driven Analysis in a Missile Supply Chain (ProAM) Project

Another important design-analysis integration project in which the EIS Lab team is currently
participating is the Product Data-Driven Analysis in a Missile Supply Chain (ProAM) project
(EIS Lab 1998), also being conducted by members of the EIS Lab. As in TIGER, ProAM’s
goal is to demonstrate a collaborative design and manufacturing scenario between SMEs and
prime contractors in which SMEs access advanced analysis capabilities through an Internet-
based engineering service bureau (ESB) and provide feedback early in the product
development cycle. Also as in TIGER, the representative test case chosen for ProAM is the
thermomechanical analysis of PWAs and PWBs. The prime contractor in the ProAM
demonstration scenario is the Aviation and Missile Command’s (AMCOM) Manufacturing
Science and Technology (MS&T) Division, and the SMEs are small PWB manufacturers.
The ProAM project is also providing significant input to the GenCAM standard, an IPC
(Institute for Interconnecting and Packaging Electronic Circuits) data transfer standard being
documented in a series of standards identified as IPC-2510 (Institute for Interconnecting
and Packaging Electronic Circuits 1999a; Institute for Interconnecting and Packaging
Electronic Circuits 1999b). This standard specifies data file formats used to describe printed
board and printed board assembly products with details sufficient for tooling,
manufacturing, assembly, inspection and testing requirements. These formats may be used
for transmitting information between a printed board designer and a manufacturing or
assembly facility. The files are also useful when the manufacturing cycle includes computer-

aided processes and numerical control machines.
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Other Design-Analysis Integration Research

Modeling Semantic Integrity in Design-Analysis Information Flows

Eastman (1996) introduces a new representation for modeling semantic integrity in
engineering design. In this representation, the design and analysis of an engineering product

is modeled as a network of design/analysis operations of the form:

@, =({E} AE} ACH{C))

Where:

{E}} (readset entities) is the set of classes read as input to application @, ;

{E}) (writeset entities) is the set of classes written as output upon successful completion
of application @, ;
{C}? (before-constraint set) is the set of integrity constraints to be evaluated before the

execution of application ®,. The scope of {C}? - that is, the classes accessed in its

evaluation — includes {E}};

{C}/ (after-constraint set) the set of integrity constraints to be evaluated after the

execution of application ®, . The scope of {C}/ includes {E}F U{E}) ;

Readset entities are the classes read by the application, whereas writeset entities are the

classes modified in the application, which may overlap with the readset classes. Associated
with an entity class E;is a set of constraints (or integrity rules) denoted {C,}. The

constraints {C, } are inherited into the set of all instances of class E,. Constraints may or
may not have a function body. Those without a function body serve as shadows for an
external application and their state is treated as a flag by the application interface, which sets
the constraints instance states corresponding to the operation taken. Those that have a

function body are executable and derive the constraint’s state when applied to its arguments.
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Since design applications may be executed multiple times, an operation instance — denoted
¢, - is defined which is an instance of application ®, as:

¢, =(le};.{e} . {c}). {c}))

Where:

{e}g are instances of {E}F;
{e}g/ are instances of {E}! ;
{c}g are instances of {C}”. Their possible values are True, False, Undefined and NULL;

{c}; are instances of {C}/.

When an operation instance ¢, is performed, new entity instances are created, deleted or

modified. In addition, the state of constraint instances changes. It is both the entity instances
and the constraint instances that determine the state of the desigh model and manage the
communication between one operation instance and others. Constraints are satisfied
incrementally by a sequence of operation instances; each operation instance adding to the set
of integrity rules already satisfied, thus incrementally building up the design model. Design is
considered completed when a state of total integrity is achieved for all instantiated

constraints.

Eastman’s representation also supports the case in which multiple constraints are associated
with a single design variable. In such cases, as he points out, it is likely that some new
operation instance will modify a variable after it has been set to satisfy other design
constraints. In order to maintain the design model in a valid state an operation instance that
modifies the variables accessed by a constraint instance must set the constraint instance to
NULL, forcing the re-evaluation of all other constraint instances whose parameter values have

changed.

Eastman also explains that many existing engineering and manufacturing applications, many
of which have long-standing use and validation, do not have to be rewritten in order to
accommodate his representation. Instead, they have surrounding or ”wrapping” code that

performs the necessary translations and serves the purpose and has the general form of the
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equation for ¢, shown above. Prior to extracting readset data, the wrapper checks the value

of the before-constraints to determine if the application can be executed. If so, the data is
extracted and the operation is executed. A successful operation instance results in both new
or modified data being assigned and the after-constraints set to True for the instances being
written. As new data are written, the effects of the changes are propagated. The changed

constraint flags are then available to be read by the before-constraints of other applications.

Eastman, et al. (1995; 1995; 1991; 1994) developed the Engineering Data Model (EDM) and
its database implementation (EDM-2) as a platform for both representing design
information and supporting translation between different applications views. EDM is a data
model tailored for product modeling that consists of both a graphical notation and a textual
definition language. EDM-2 is a database management system based on EDM whose
intended use is for the implementation of back-end databases supporting the integration of a
heterogeneous and evolving set of design applications. It incorporated operations for data
management and is not meant to support design operations directly, as these operations are
the responsibility of external applications. As a back-end database, it addresses the following
capabilities:

e Translation of data between the database views corresponding to different application
interfaces (Assal and Eastman 1995). EDM makes translation a task of the database
itself, and in order to do this it defines some structures (design entities, constraints and
maps) that capture the relationships of the object types and provides mechanisms for
managing the integrity of the views when they are updated, possibly in an arbitrary
order. It also provides a mechanism for deriving dependent data and generating and
maintaining equivalent views. This mechanism allows storing different representations
of the same product in a unified database and provides means for translating from one

representation to the other.

e Managing the integrity of data, especially among concurrent users making iterated

decisions (Eastman, Cho et al. 1995).
e Version control and iteration to earlier design stages.

¢ Dynamic model evolution, in support for new applications, as needed both during

design and over the product life cycle (Eastman, Assal et al. 1995). EDM-2 defines
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distinct constructs for supporting model evolution, which allow extensions to be made

to both the model schema and object instances.

The approach of defining views of product data to support specific applications is similar to
the one presented in this thesis. This thesis is, however, more specific in that it focuses on
the definition of analysis-oriented views of design data aimed at supporting the needs of
analysis applications. Despite this difference in scope, there are some interesting similarities
between the EDM language and the APM-S language presented in this thesis (Subsection
52). For example, EDM defines constructs called Design Entities, which are similar to
APM-S domains (they both define classes and their attributes). Likewise, the instance
definition mechanism of EDM is similar in scope to the instance definition language
presented in this thesis APM-I (Subsection 53). EDM constraints are similar to APM-S
relations in that they both define relations among attributes. The difference is that in EDM
the main purpose of constraints is to ensure data integrity, whereas in APM-S relations are
used to define bi-directional mappings between design and analysis representations (in the
case of product idealization relations), or to derive the values of redundant product attributes
(in the case of product relations). In this sense, APM-S relations are more similar to EDM
maps, which are specializations of constraints used to translate data from one representation
to another. However, unlike APM-S relations, maps define the data translation in one
direction only. For example, a map can be defined to translate an IGES line into a DXF line.
If the opposite mapping is needed, a separate map must be defined. Another difference is in
how constraints and relations are defined and implemented. In EDM, constraints and maps
are defined as calls to external functions implemented in some target programming language
and dynamically linked into the database. In APM-S, relations are fully defined as part of the

APM definition and resolved at run time by an external constraint solver.

Graph Grammar-Based Representation Conversion

Rosen, et al. (1992; 1991; 1994), addressed the problem of integration of CIM (Computer
Integrated =~ Manufacturing)  functions  through  viewpoint-specific ~ feature-based
representations. They describe the use of formal graph grammars (a generalization of string
grammars) to define two representations: a feature-based design representation of thin-
walled components and a manufacturing representation. The first representation captures

the features and their geometry and adjacencies of components that can be manufactured by
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injection molding, die casting, and sheet metal stamping processes, whereas the second
representation captures manufacturing features and cost drivers. Next, they present a general
conversion methodology to convert the feature-based design representation into the
manufacturing representation. The resulting manufacturing representation is then used to
perform tool construction cost evaluations. They illustrate their conversion methodology by
converting the feature-based design representation of a simple thin-walled component,
which is to be injection-molded, into its corresponding manufacturing representation and
performing a tool cost evaluation based on the resulting manufacturing representation.
Although Rosen’s conversion methodology was not specifically developed for design-
analysis integration and focuses on feature-based representations, its general purpose — to
convert information between two representations that have been formally defined with some
kind of formal language — is very similar to the one of the APM Representation presented in

this thesis.

Design Idealization using Artificial Intelligence Techniques

Shephard, et al. (1992) describe how physical descriptions of multichip modules (MCMs) are
converted into idealized representations that are then used to perform thermal and
thermomechanical finite-element analyses. The physical description of the MCM is
considered as the driving representation of all the subsequent analysis steps in the process.
This physical description is composed of two parts: the first part consists of the geometric
model information and the second part of non-geometric information (or “attributes”) such
as material properties, environmental conditions and boundary conditions, required to
complete the physical description. Analysis idealizations processes then use a set of
“interrogation functions” to obtain information not inherently in the model’s data file and
convert the physical description into the idealized representation finally analyzed. For the
test case presented, the source of the physical description of the MCM is a CIF (Mead and
Conway 1980) file’. CIF files alone do not contain enough information to drive the
idealization process required to perform the thermal and thermomechanical analyses. Thus,
the approach taken was to supplement the CIF file with the additional information needed
to complete the physical specification of the MCM. An idealization control system called
IDEALZ, developed by the authors, provides explicit control of the idealization steps used

3 CIF stands for CalTech Intermediate Form, a graphics language which can be used to describe integrated circuit layouts.
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during engineering design and the coordination required in the design process. IDEALZ,
described in detail in (Shephard, Bachmann et al. 1990; Shephard, Korngold et al. 1990;
Shephard and Wentorf 1994), uses Al techniques to guide the user through the design
process by interpreting his analysis requests, determining if they are reasonable, developing
an idealization strategy, interacting with the various modelers and applications to get the
analysis results and adaptively refining the idealization until the desired level of accuracy is
achieved. A graphical user interface for IDEALZ is described in (Wentorf and Shephard
1993).

Finn, et al. (1993; 1992) also utilize Al techniques to obtain an idealized representation of
the product - more suitable for analysis - from a CAD representation. They describe an
interactive modeling system for assisting engineers in the process of selecting, applying and
evaluating candidate mathematical modeling options in order to obtain the idealized model
for analysis. An engineer using this system first constructs the design problem with the help
of a CAD system and a case base of modeling options. The CAD system allows the engineer
to specify the geometric features of the physical system, while the case base of modeling
options allows him to specify the phenomena and boundary conditions. Once the user
constructs the problem, the modeling assistant creates a knowledge-based CAD
representation of the problem which forms the basis for matching and retrieving suitable
base cases. The engineer then selects a particular modeling option and the system
automatically evaluates the problem by applying the appropriate engineering formulae and
solving them. New candidate models can be assessed by adding or removing features,
specifying alternate phenomena or boundary conditions, reducing dimensions, taking
symmetries or substituting material models. The results allow the engineer to compare

different candidate models and assess the effect of particular modeling decisions.

Design-Analysis Integration for Finite Element Analysis

Arabshahi, et al. (1991; 1993) point out the fact that although complete geometric
information for the product is often available in the form of a solid model, this is rarely
taken advantage of due to the amount of time required to simplify and idealize the geometry
for the subsequent meshing stage. For this reason, they say, analysts often find it easier to
reconstruct the idealized model from scratch, a process which is error prone and prohibits

linking the analysis results to the product in a formal way. The unfortunate result is that a
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large proportion of the analyst's time is spent preparing an idealized model of a product for
analysis. They describe a system which would allow a more automated transition from a solid
model to an idealized model suitable for finite-element analysis. The functional components
of such a system are: 1) A Product Description System (PDS) in which reside both the
geometry and non-geometric attributes such as environment conditions, design
requirements, manufacturing method and costs, 2) An intelligent, semi-automated means for
transforming the geometric and non-geometric data stored in the PDS into an attributed,
abstracted model suitable for finite element mesh generation, 3) Intelligent meshing routines
with varying degrees of automation to suit the application, 4) Finite element solvers to suit
the range of analysis problems, and 5) Post-processing including the ability to associate
results with the idealized model to allow for modifications to this model (adaptive

idealization).

Agent-Based Engineering Tool Integration

Cutkosky, et al. (1993) describe a demonstration project called The Palo Alto Collaborative
Testbed (PACT) whose goal is to develop an infrastructure which integrates multiple sites,
subsystems, and disciplines to facilitate concurrent engineering. PACT’s architecture is based
on programs that encapsulate engineering tools called agenzs. Communication among agents
is achieved by standardizing: a) the services that agents may request of one another, b) how
knowledge (constraints, negations, disjunctions and rules) is exchanged among agents, and c)
the vocabulary (classes, relations, functions, and object constants) shared among agents, also
known as ontology. Communication between applications is achieved exclusively through
their corresponding agents. In contrast with traditional product data exchange approaches,
PACT utilizes no shared models at all because, as the authors argue, it is a problem for
different design tools to share the same model. They also add that a single shared database
encompassing all the data of participating tools would quickly become a bottleneck.
However, the authors admit that setting up the communication framework between agents
requires too much interaction and negotiation between the developers of the tools in order
to agree on a shared ontology. They mention that one possible solution to this problem is to
take advantage of the standardization efforts made by the STEP community to define the
necessary ontologies. Since STEP is a formal standardization effort, any necessary agreement

is handled by the developers of the standard, not by individual tool developers.
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Multi-Model Design-Analysis Integration

Sahu and Grosse (1994) describe a three-model representation to enable integration between
design and analysis modules. The primary representation of a design consists of a high level
representation of its geometry, such as that contained by a feature-based solid model, and
associated intent-specific information concerning both the design intent and its
manufacturing process. The secondary representation provides a representation of the model
suitable for numerical solvers; a common form of secondary representation is a finite
element model of the design’s primary representation. The information stored in the primary
representation helps determining and imposing the boundary conditions, material properties
and loading conditions. The raw data from the numerical solution (that is, the finite element
solution) constitutes the tertiary representation. The tertiary representation is the lowest
possible representation of the design and has little meaning until it is associated with the
secondary representation and transformed into a qualitative description useful for design
modification. The authors describe and implementation of this methodology, a system called
Cognitive Symbolic and Numeric Designer (CSN-Designer). CSN-Designer assists the
designer in making intelligent design changes based on functional and manufacturing
analyses. The authors argue that the up-front use of analysis and manufacturing simulation
results can provide guidance to the design engineer during the early stages of design, and that
this has been the primary motivation in building coupled systems for design and analysis

tools. They call this concept “analysis for design”.

Mathematical Modeling and Simulation Languages

A significant multinational research effort — coordinated by the Federation of European
Simulation Societies (EUROSIM) - is currently taking place in Europe to develop a
mathematical modeling and simulation language called Modelica (Elmqvist and Mattsson
1997; Elmqvist, Mattsson et al. 1998a; Elmqvist, Mattsson et al. 1998b; Fritzson and
Engelson 1998; Mattsson and Elmqvist 1998). The aim of Modelica is to unify the concepts
from several modeling languages available from universities and small companies into a
common basic syntax and semantics and to design a new unified modeling language. The
main objective is to make it easy to exchange simulation models and model libraries and to
allow users to benefit from the advances in object-oriented modeling methodology.

Modelica builds on non-causal modeling with true equations and the use of object-oriented
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constructs to facilitate reuse of modeling knowledge. Modelica is intended for modeling
within many application domains (electrical circuits, multi-body systems, drive trains,
hydraulics, thermodynamical systems, chemical systems, etc.) and possibly using several
formalisms (ordinary differential equations, differential-algebraic equations, bond graphs,
finite state automata, Petri nets, etc.). Tools that might be general purpose or specialized to
certain formalism and/or domain will store the models in Modelica format in order to allow
exchange of models between tools and between users, thus promoting reuse. The main

features that distinguish Modelica from other modeling languages are:

o  Obyject-oriented modeling: this techniques makes it possible to create physically relevant
and easy-to-use components, which are employed to support hierarchical structuring,
reuse, and evolution of large and complex models covering multiple technology

domains.

e Non-causal modeling: modeling is based on equations instead of assighment
statements as in traditional input/output abstractions. Equations do not specify which
variables are inputs and which are outputs, whereas in assignhment statements variables
on the left-hand side are always outputs (results) and variables on the right-hand side
are always inputs. Thus, the causality of equations-based models is unspecified and
fixed only when the equation systems are solved (this is called non-causal modeling).
Direct use of equations significantly increases reusability of model components, since
components adapt to the data flow context in which they are used (in other words,
they can be used with multiple input/output combinations of data). This generalization

enables both simpler models and more efficient simulation.

®  Physical modeling of multiple domains: model components can correspond to physical
objects in the real world, in contrast to established techniques that require conversion
to signal blocks. For application engineers, such “physical” components are

particularly easy to combine into simulation models using a graphical editor.
Modelica programs are built from c¢/asses. Like in other object-oriented languages, classes

contain variables, that is, attributes representing data. The main difference compared with

traditional object-oriented languages is that instead of functions (class methods) Modelica
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uses equations to specify behavior. For example, the following Modelica construct defines a
resistor and the equations that relate its resistance, voltage and current:

class Resistor “Ideal electrical Resistor”

extends TwoPin;

parameter Resistance R(unit=”"0Ohm”) “Resistance”;

equation

R*1 = v;

end Resistor;

Where TwoPin is defined as (Pin and Voltage are defined elsewhere):

partial class TwoPin “Superclass of elements with two pins”
Pin p, n;

Voltage v;

Current I;
equation

V = p.vV - n.v;

0 =p.i+ n.i;

i=p.1i;
end TwoPin;

Classes, instances and equations are translated into flat set of equations, constants and
variables. After flattening, all the equations are sorted, simplified and then converted to
assignments statements by a symbolic solver. Finally, C, C++ or Java code is generated, and

it is linked with a numeric solver. The initial values can be specified by the user as part of the

Modelica definition, by means of the parameter keyword.

The Modelica language has significant similarities with the APM-S language introduced in
this thesis (Subsection 52). Both languages are used for defining object-oriented, reusable
modeling components and model the equations relating their attributes in a non-causal way.
Symbolic solvers are also used in both works to solve for the values of unknown attributes.
The authors of Modelica are also developing a library of the most commonly used
components that can be shared between applications, similar to the library of ABBs
introduced by Peak (Subsection 9). What differentiates the research presented in this thesis
from the Modelica research is that this thesis focuses on modeling products for analysis,
whereas Modelica applications have focused on modeling analysis models (although it is
likely that the concepts could easily be applied to product modeling for analysis). In addition,
this thesis makes particular emphasis on multi-directional, multi-fidelity, reusable

idealizations, and elaborates more on how these analyzable product models are populated
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with information coming from multiple design sources and how they are connected to

multiple analysis models.

Design-Analysis Integration using STEP

Until recently, the focus of the STEP standard has been on the exchange of product data
between applications with similar scope and semantics. For this reason, the standard had not
specifically addressed the problem of integrating design and analysis applications. Currently,
however, there is a growing interest from the STEP community on improving the standard
to support analysis information and facilitate design-analysis integration. This section
overviews some past works involving STEP that are relevant to the topic of design-analysis
integration including the Engineering Analysis Core Application Resource Model (EA C-
ARM), the ongoing ISO standardization effort aimed at creating a standard representation

for engineering analysis information.

AP210-Driven PWA Fatigue Analysis

Rassaian, et al. (1997; 1995) describe what is perhaps the first commercial utilization of a
STEP Application Protocol (AP210) as the input for an engineering analysis. They describe a
system which utilizes a STEP translator to extract data from a CAD Printed Wiring
Assembly (PWA) database, automatically builds finite element structural and thermal models
from the design data, and performs structural and thermal analyses. The results of these
analyses - together with data from component, material and environment databases - are
then imported to an in-house-developed fatigue analysis code called Fatigue Synthesis for
Avionics Programs (FSAP), which helps the user predict the fatigue life of every part on a
PWA and provides a series of options to solve any problem encountered. For the calculation
of fatigue life, FSAP provides closed-form algorithms (for pre-built analysis models, each
representing a specific package type) as well as finite element analysis (for custom package

types that are not in the library of analysis models).
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Defining Product Views using STEP Mapping Languages

Hardwick (1994) describes how a STEP mapping language (EXPRESS-V — Appendix A) is
used to define views of an integrated database and to integrate the applications used in an
automotive company. This integrated database is formed by the union of overlapping
subsets (known as Application Interpreted Constructs or AICs) of two STEP application
protocols: AP203 (which supports geometric descriptions) and AP207 (which supports sheet
metal die descriptions). A department of an automotive company receives AP203
descriptions for a car body and issues AP207 sheet metal die descriptions that contain the
process plans, material descriptions and change orders that an automotive supplier needs to
make dies for the sheet metal parts of the body. EXPRESS-V is used to define the bi-
directional mappings between the integrated database and each of the AP views. These views
support the information needs of different applications including a geometric modeler, a
materials system, a process planning system and a project management system. Although this
paper does not explicitly address the problem of integrating design and analysis applications,
application-specific views could potentially be defined to support the needs of analysis

applications.

A similar data exchange approach based on EXPRESS mapping languages was developed by
Gadient and Hines (1994). In their paper, the authors describe an application of STEP
mappings in their EXPRESS-Driven Data Conversion (EDDC) architecture. They
implement an EDDC to convert electrical product data (printed circuit assemblies) from
Mentor Graphic’s Board Station to STEP AP210. In the EDDC architecture, the source and
destination information requirements are defined in EXPRESS and mappings are defined
between the two. The architecture is composed of three parts: 1) a front-end of the
translator which performs the syntactic translation function. This converts the syntax of the
source system’s data from its native form into a form defined in EXPRESS. Since the two
representations are equivalent, only synzactic (homogeneous) translation takes place. 2) A
back-end implemented in the same way as the front-end; the code in the back-end performs
syntactic translation from the data defined in EXPRESS to the data format expected by the
destination system. 3) Mapping code, which specifies the mappings from the data types
defined in the source working form to the data types defined in the destination form. Since
the source and the destination schemas are inherently different in nature, semantic

(heterogeneous) translation takes place. Because mapping languages were still under
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development by the time the paper was written, the authors described the inter-schema
mappings with hand-drawn mapping diagrams and then wrote the code to implement these
mappings. They mention the fact that a mapping language such as EXPRESS-M would

eliminate the need to do this manually.

Standard Engineering Analysis Representations

The STEP standard currently includes three standards for the exchange and description of

engineering analysis information. These are:

e Part 104 (ISO 10303-104 1995): an integrated resource for finite element analysis of

linear stress-displacement problems using unstructured meshes;

e Part 105 ISO 10303-105 1997): an integrated resource for the kinematics analysis of

assemblies of rigid bodies with flexible joints;

e AP 209 (Hunten 1997; ISO 10303-209 1996): an application protocol for the exchange
of finite element models and results of composite parts. An important feature of AP
209 is the sharing of information between the design and analysis product definitions.
Another crucial concept of this AP is that the shape and analysis information is meant
to be implemented to enable bi-directional transfer to enable the feedback of

information in the iterative design-analysis environment.

These three parts cover an important but small part of the engineering activity. They are
limited to stress-displacement analysis using finite elements and kinematics analysis, and do
not address other physical phenomena or other analysis methods. In addition, they do not
allow for a definition of the analysis problem that is independent of the solution method,

nor they support version control for material and environmental properties used in analysis.

In response to this deficiency, ISO is currently coordinating a standardization effort to
develop an Engineering Analysis Core Application Resource Model (EA C-ARM) (ISO
1997). This standardization activity will provide a core model to support the common
information requirements for many types of engineering analysis. These common
information requirements include material data, the modeling of wvariable properties

(including variable shape), and those aspects of configuration control that are important for
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the effective management of analysis tasks in the design process. The common information
requirements will be expressed as groups of application-specific information entities known
in STEP as “Units of Functionality” (UoFs), which can be included within Application
Protocols (APs) as required’. The EA C-ARM will define information requirements for
engineering analysis that are within the scope of existing and future APs. The intent is to
provide an interoperating suite of engineering analysis APs that will share information in a
multi-disciplinary environment. To date, four APs have been identified for initial

implementation within an engineering analysis suite:
o AP 209: desctibed above;

o Material Services AP: that will provide a standard to represent properties and

allowables for materials, adhesives and standard fasteners;

o  Aero-Thermal Elasticity AP: which will represent information used in the simulation
of the interaction between flight vehicle components and the air. This AP will include
results generated by Computational Fluid Dynamics (CFD) analysis using finite

difference methods on structured grids;

o Dynamic Mechanisms Analysis AP: which will represent information used in the

dynamic simulation of mechanisms with flexible links;

o FElectro-Mechanical Subsystems AP: which will represent information to perform the
electro-mechanical subsystems integration and analysis tasks such as control laws and

state-space analyses.

The scope of the EA C-ARM includes the following analysis information:

® Material Data: to include the representation of material information required for
engineering analysis, such as material variation with respect to environmental
conditions, behavior of material volumes and material surfaces such as creep, fracture,
fatigue, and corrosion, material property distribution, composites, allowable values and

material fabrication processes.

4 Bach UoF is mapped to the STEP Integrated Resources (Appendix A) by an interpretation process known as “mapping”
when it is used in an AP.
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®  Property Modeling: to enable the description of properties that are distributed within a
material object. These properties may take the form of material properties, distributed

loads or analysis results.

o  Confignration Control and Management Data: to support expanded version control
(to track versions of analysis models, materials, environments, loads and results),

problem description and idealization, engineering allowables, and derived properties.

The information entities defined in the EA C-ARM will overlap with the Application
Resource Models (ARMs) of existing APs. In these cases, the EA C-ARM will encompass
those entities that are generic, providing an opportunity for interoperable extensions in each

AP. For example, two current APs that overlap with the EA C-ARM are:

e AP203 (ISO 10303-203 1994): the EA C-ARM will extend the requirements of AP 203
for configuration control to include versioning of loading conditions, material

properties and analysis results.

e AP209: the EA C-ARM will include the requirements of AP 209 for the definition of
composite layups and for analysis using finite elements. The EA C-ARM will
generalize the requirements so that AP 209 will be interoperable with future APs

supporting structured analysis meshes and other analysis methodologies.

The EA C-ARM also has close relationships with some of the current generic and integrated
resources of the STEP standard. These resources already include some semantics within the
context of engineering analysis. For example, Part 42 (ISO 10303-42 1994) already supports
the description of the geometry of real or idealized material objects required by the EA C-
ARM; the EA C-ARM will extend Part 42 to include parametric volume entities and
mathematical representations. Another example is Part 45 (ISO 10303-45 1994), which

provides support for describing material properties.

The expected benefits of the EA C-ARM are:

e Reduced development time for engineering APs, since information requirements will

not have to be re-invented from scratch for each new AP; and
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e Better quality of the information requirements, since they will be reviewed by the

domain experts, rather than “lost” within a larger AP.

Another significant standardization effort — previous to STEP’s EA C-ARM and with close
ties to it — is the Generic Engineering Analysis Model (GEM) Project (ESPRIT 1993;
ESPRIT 1996; Helpenstein, Kenny et al. 1997a; Helpenstein, Kenny et al. 1997b). The GEM
Project was one of the projects (project 8894, started in June of 1993 and completed in June
of 1996) in the context of Computer Integrated Manufacturing and Engineering (CIME) of
the European Specific Program for Research and Development in Information Technology
(ESPRIT) sponsored by the European Union (EU) Directorate-General XIII. The aim of
GEM project was to develop a Generic Engineering Analysis Model which could be used for
the exchange, data sharing and archival of engineering analysis models. GEM had to be
general enough to support a range of industrial applications, a variety of design and analysis
methodologies, and facilitate the use of analysis results in the design model. In order to do
this, GEM represents properties and results independent of the analysis method or
discretization used, in such a way that they are associated with the underlying geometry or
product component. To ensure that GEM was sufficiently generic, a survey of end user
industrial problem in the types of engineering analysis which it supported was
commissioned. Careful consideration was also given to the need to interface with CAD-
generated data. As a result, GEM is capable of supporting the following types of analysis and

solution techniques:

o  Analysis types: structural mechanics, fluid mechanics, thermodynamics and heat

transfer, electromagnetic, metallurgical transformations.

o Solution techniques: finite element, finite volume, finite difference, boundary element,

transmission line, ray tracing.

Since its inception, one of the main tasks of the GEM project was to identity and leverage
any engineering analysis capability already existing in the STEP standard, providing
extensions to it whenever its capabilities were found inappropriate or insufficient. In order
to facilitate this process, GEM used the same methodology as STEP, particularly in its use of
EXPRESS and P21 files. The GEM project identified some STEP parts that support some

shape and analysis information, but the coverage was found to be very limited. For example,
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the only analysis method supported in STEP was finite element. Moreover, it was almost
impossible to use STEP for a description of an analysis task and for the representation of

numeric functions with arbitrary interpolation rules.

During the lifetime of the GEM project, members of the modeling team participated actively
in the development process of STEP. Many decisions in international standardization could
in this way be harmonized with the requirements of the GEM. The participation in ISO
activities allowed the GEM developers to use up-to-date STEP Parts and consistent
methodology, thus guaranteeing that any feedback to standardization was compatible with
existing Parts. The GEM Project influenced STEP’s engineering analysis standardization
work significantly, particularly in the development of the EA C-ARM. In fact, the data
model developed for the GEM project served as a starting point for the development of the
EA C-ARM, and the members of the GEM team are still actively involved in this ongoing
standardization effort. The EA C-ARM enjoys a strong industrial interest, especially from
the aircraft industry, which is providing a significant amount of resources to help expedite its

development.

Summary of Gaps

In light of the literature survey of the preceding three sections, the following items stand out

as needing additional attention:
o Lack of a product modeling representation tailored to design-analysis integration

There is a need for a general product representation that addresses the special needs of
design-analysis integration and that can be easily defined and modified by an analysis expert
and not necessarily by a computer-programming expert. Although some of the works
surveyed provide mechanisms for defining modeling objects and the relationships between
their attributes, they do not define semantics specific to design-analysis integration. For
example, product idealization relations are not clearly distinguished from other types of
relations, and concepts that are important to analysis - such as multi-fidelity idealizations

(Subsection 5) - are not defined.
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In some design-analysis integration approaches analysis applications retrieve the data they
need directly from design representations. Most design representations, particularly
standardized ones such as STEP Application Protocols, are convenient for the homogeneons
data exchanges that take place between design applications with similar scope and semantics
(for example, when sending data from one geometric modeler to another from a different
vendor using AP203). However, they are not the most appropriate for the exchange of data
between design and analysis applications, because of the large gap in scope and semantics
between design and analysis (making it an heterogeneons data exchange), and because most of
the information contained in the design representations is not needed at all in analysis. As a
consequence, the codes of the analysis applications become considerably more complex,
since they have to resolve this semantic mismatch themselves and carry out the
transformations or idealizations required. Common idealizations that could be potentially
shared among several analysis applications are instead replicated in the codes of each
individual application. In addition, design representations usually have data structures that

are too complex and present information in terms that are unfamiliar to analysis experts.

Some of the approaches surveyed utilize Al and agent-based techniques to idealize the
design model and populate the analysis models. These techniques are difficult to generalize,
implement and modify and therefore are more appropriate for specific domains and solution
methods (for example, finite-element thermomechanical analysis of multi-chip modules). It
appears that in only such cases it is feasible to create a knowledge base complete enough to

support the idealization process.
o Lack of a modeling langnage for defining analyzable views of products

Associated with the first item, there is a need for a modeling language that allows analysts to
easily create, modify or extend analyzable views of products without requiring extensive
programming, and that is independent from the domain, solution technique or computer
applications used. General-purpose product modeling languages such as EXPRESS do not
contain specific semantics to better describe and facilitate design-analysis integration. For
example, EXPRESS does not convey concepts such as product idealization, design data

sources, design data integration, or multi-fidelity domains.
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o [ack of explicit representation of data integration knowledge

Also requiring additional attention is the problem of how design information scattered
across several repositories is retrieved and properly combined for analysis purposes — a
common issue when it comes to design-analysis integration. There is a need for formal,
explicit, implementation-independent definitions to describe this data integration process. 1f
standard representations are used as the source of design information, the integration
strategy must take into account that there will be invariably some analysis that requires
information not supported by any existing standard representation. Obviously, it would be
impractical to develop a new standard representation for each new analysis situation that
arises as the number of these representations would grow exponentially. Therefore, the
overall design representation must be considered, in general, as an aggregation of standard

and non-standard representations.
o Lack of explicit representation of design idealization knowledge

There is also a need for a mechanism for formally defining the transformations required to
idealize design information. Normally, these transformations are not explicitly defined
anywhere and, as a consequence, end up buried inside the code of the analysis applications

(or in the minds of the analysts), making it difficult to reuse or modify them.
o No clear distinction between product and analysis models

In some of the representations surveyed, analysis models are combined with product
models. As a result, there is not a clear distinction between the attributes and relations that
belong to the product (in other words, that are 7ntrinsic to it) and those that correspond to
the analysis model. This distinction is important because intrinsic product attributes and
relations are independent of the environmental conditions to which the product is subjected
(and therefore portable and reusable), whereas analysis attributes characterize the behavior

of the product under specific environmental conditions.
o Lack of bi-directional idealization transformations

The idealization approaches surveyed do not explicitly support design synthesis, where the
flow of information goes in the reverse direction, that is, from analysis to design. There is a
need for a mechanism to define product idealization transformations so that they can also be

used for design synthesis (Subsection 5).
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o Limited availability of analysis representation standards

As mentioned above, current product data exchange standards have not yet provided a
general-purpose design-analysis integration representation. As a consequence, most data
exchange implementations between design and analysis applications still require significant
customization and/or are largely confined to proprietary solutions. The STEP standard
currently includes three standards for the exchange and description of engineering analysis
information (Part 104, Part 105 and AP 209), but they are limited to specific physical
phenomena and analysis methods. Even when the EA C-ARM is completed, applications
will not be able to take advantage of it until specific APs that make use of the EA C-ARM
are developed, which requires considerable time due to the inherent inertia of the
standardization process. Once developed, APs are static representations and changing or

extending them requires a long process of discussion and balloting.
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CHAPTER 3

PROBLEM STATEMENT AND THESIS OBJECTIVES

"In the middle of difficulty lies opportunity.”

(Albert Einstein)

The previous two chapters defined the general problem of design-analysis integration and
identified some gaps that exist in the current state of this field. This chapter will provide a
statement of the problem that this thesis addressed as an attempt to fill some of these gaps
and list the objectives that drove the development of the Analyzable Product Model

Representation.

Problem Statement

The problem addressed by this thesis can be stated as follows:

There is a need for a formal engineering information representation that addresses the
special needs of design-analysis integration. This representation shounld provide the
necessary constructs for defining analysis-oriented views of an engineering part. These
analysis-oriented views should provide a single source of analysis information that can
be used by a family of diverse analysis models, including multi-fidelity models. The
analysis models being supported should drive the semantics and the amount of
analysis information that these views are presenting.

The representation should also provide a mechanism for explicitly describing and
capturing the rules or knowledge used to combine the design information spread across
multiple design repositories, as well as the transformations required to idealize this
design information.
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Thesis Objectives

The main objective of this work was to develop a formal, generic, computer-interpretable
engineering representation that could be used to create analysis-oriented views of
engineering parts or products. As illustrated in Figure 27-1, these analysis-oriented views
should combine design information spread over multiple design representations and add
idealized information, providing a unified perspective of the product that is more suitable for
analysis. In addition, this representation should bridge the semantic and syntactic gap
between design and analysis representations and enable reusability by supporting data entities

and idealizations that can be shared among multiple analyses.
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Figure 27-1: Focus of this Thesis: The Analyzable Product Model

This new representation - named Analyzable Product Model (APM) Representation — should

provide the building blocks needed for defining analysis-oriented views of products. This
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representation should also define the operations that can be used by client applications’ to

access and manipulate the information contained in these views.

What follows is a list of the objectives that drove the development of the APM
Representation presented in this thesis. These objectives can also be viewed as the
requirements for any product representation whose purpose is to facilitate design-analysis
integration. They define the criteria against which the APM representation will be evaluated
later in this thesis (Chapter 97). Examples of these needs are given in chapters 1 and 7 and

are thus referenced here.

In order to facilitate and enhance the objectivity of the evaluation process, an effort was
made to state objectives that are as well defined and independent as possible. Consequently,
the list of objectives is rather long. To facilitate understanding, the objectives were grouped

into the following eight categories:
1. Analysis-Oriented View Definition Objectives;
2. Multiple Design Sources Support Objectives;
3. Idealization Representation Objectives;
4. Relation Representation and Constraint Solving Objectives;
5. Analysis Support Objectives;
6. Data Access and Client Application Development Objectives;
7. Compatibility with Other Representations Objectives; and

8. General Objectives.

Analysis-Oriented View Definition Objectives

These objectives refer to the ability to define analysis-oriented views of product information
to support the unique information requirements of engineering analysis and bridge the

semantic gap between design and analysis.

5 APM client applications are programs that directly access the information defined in an APM. Normally, client
applications are analysis applications, but they do not have to be. An example of a client application that is not analysis
application is an application to browse and modify the structure and contents of an APM (it accesses APM data but it is
not used to perform any engineering analysis).
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Objective 1: Provide the necessary constructs for defining analysis-oriented views of an

engineering part.

The APM Representation should provide the necessary modeling building blocks for
defining analysis-oriented views of product models. These analysis-oriented views should
specify how to combine information from several design models and derive idealized
information from this design information in order to support the requirements of a set of
related analyses’. Analysis-oriented views should provide a unified perspective of the product

that is more suitable for analysis.

Objective 2: Bridge the semantic gap between design and analysis representations.

As discussed in the previous chapter, one of the main problems encountered with current
design-analysis approaches is that, in these approaches, analysis applications retrieve the data
they need directly from design representations. However, design representations are not the
most appropriate direct sources of analysis information because of the large gap in scope
and semantics that exists between design and analysis. In addition, design representations
usually have data structures that are too complex and present information in terms that are

unfamiliar to the analysis expert.

The APM representation should provide the capability to define and populate analyzable
product models that present analysis information at a semantic level more compatible with
the analysis models. This capability should include a mechanism to perform the necessary
syntactic and semantic translations to the design data to transform it into analyzable

information.

Objective 3: Enable the creation of concise analyzable product models.

As discussed in the previous chapter, much of the information contained in design
representations is not needed at all in analysis. One of the driving reasons for resorting to an
analyzable product model is to simplify the design information and make it more compatible
with the needs of the analysis models that are going to use it. Hence, analyzable product

models defined with this representation should contain only the information needed by a

¢ In this context, the term “related analyses” refers to analyses that evaluate similar or interrelated phenomena of the same
product. For example, a set of related thermomechanical analyses for PWBs.
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family of related analyses. In most cases, this may involve eliminating or simplifying design
information. One example of information that is often simplified is geometry, since the

detailed geometric representation created during design is rarely needed in analysis.

Objective 4: A/llow easy creation, modification and extension of analyzable product models.

Analyzable product models should be easy to create, modify and extend. The syntax used for
creating these models should be easy to understand by the people who are familiar with the
knowledge being represented. Ideally, the same experts familiar with the domain being
represented should be able to develop an analyzable product model with little assistance

from a data-modeling expert.

Multiple Design Sources Support Objectives

These objectives refer to the ability to combine design data coming from different sources in
order to support engineering analysis, and to explicitly represent the rules used to combine

this data into a single integrated representation.

Objective 5: Support for multiple sources of design information.

One of the main premises of this thesis is that the information required for analysis spans
multiple design repositories. For this reason, the APM representation should provide some
method to specify how design information should be retrieved from multiple sources and

combined to create a unified, analyzable view of it.

Objective 6: A/low explicit representation of design data integration knowledge.

One of the main gaps in current design-analysis integration approaches identified in the
previous chapter is that the rules used to combine the various design sources are not
explicitly captured anywhere. As a result, they end up buried inside the codes of the analysis

applications, becoming very difficult to maintain and reuse.

The APM Representation should provide some mechanism to capture these integration rules
as part of the analyzable product model itself. By doing so, it will not be necessary to

replicate code to implement these rules in each analysis application. The APM
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Representation should provide formal, implementation-independent definitions to explicitly
specify how design data from multiple sources is combined. These definitions should be easy

to recognize, modify and reuse.

Idealization Representation Objectives

These objectives refer to the ability to describe idealized information about an engineering
part in order to be used by analysis models and to explicitly represent the transformations

required to obtain this idealized information from design information.

Objective 7: Allow explicit representation of idealization knowledge.

In current typical approaches, as discussed in the previous chapter, the transformations
required to obtain the values of idealized attributes from design or product attributes are not
explicitly defined anywhere. As a consequence, they end up buried inside the code of the
analysis applications making it difficult to reuse or modify them. The APM Representation
should provide the necessary constructs for defining idealized attributes or features of the
part as well as the mathematical relations that define how these idealized attributes are
derived from the “real” or “manufacturable” attributes of the part. These definitions should

be formally captured as part of the analyzable product model itself.

Objective 8: A/low the definition of reusable idealizations.

Idealized attributes and product idealization transformations should be defined in such a way
that they can be used by potentially more than one analysis application (in other words, be
rensable). This is illustrated in Figure 1-4, where a linkage has been idealized as an I-section
truss. This idealized view of the linkage is being used by two applications: a tension analysis
application and a torsion analysis application. The ability of reusing idealizations will avoid

having to replicate idealization code in each analysis application.

Objective 9: Allow the definition of multi-fidelity idealizations.

Often, analysts perform the same analysis at different levels of precision by using more or

less accurate idealizations of a feature. For instance, a coarse analysis may only require a
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simple approximation of a feature, whereas a more precise analysis would require a more

detailed (and, consequently, more computationally-demanding) version.

Hence, the APM Representation should allow the definition of multiple fidelity levels of the
same idealized feature. For example, as shown in Figure 1-4, the same linkage of the
previous example has been idealized as a straight I-section truss (as in the previous example)
and also as a half I-beam of variable height with to half sleeves at each end. Both idealized
views of the linkage should be available to any analysis application accessing the analyzable

product model.

Relation Representation and Constraint Solving Objectives

These objectives refer to the ability to define mathematical relations (or constraints) among
the attributes of an engineering part. It also refers to the ability to use these relations to solve

for the unknown value of one or more attributes.

Objective 10: A/low the definition of complex relations.

Relations are mathematical constraints that relate the values of the attributes of a part or
feature. The APM Representation should provide the capability to define systems of
relations of relative complexity. In addition to the common algebraic operations (addition,
subtraction, multiplication, division), it should be possible to define relations that involve
transcendental functions (trigonometric, exponential, logarithmic, etc.), powers, absolute
values, aggregate operations (sums, averages, minimums, maximums), conditional (i £-then)
statements, counter-controlled repetitions (for or while loops) and calls to external

procedures.

Objective 11: A/low the definition of multidirectional relations.

A true design-analysis integration environment requires a bi-directional integration between
design and analysis. In other words, the flow of information between design and analysis
representations via an analyzable product model should not be limited to one direction (for
example, from design fo analysis). In the case of design checking, in which analysis is used to

check a particular design, the flow of information is from design to analysis. However, when
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analysis results are used to define the design (as is the case of design synthesis) the flow is in

the opposite direction. The APM Representation should support both directions.

In order to support this bi-directional flow of information between design and analysis, the
APM Representation should provide the capability of dynamically changing the
input/output directions of the relations defined in an analyzable product model. For this
purpose, the definition of a given relation should not dictate which of the attributes

participating in the relation are inputs or outputs.

Objective 12: A/low dynamic relaxation of relations.

In some special cases, the constraints imposed by a given relation may make reaching a
satisfactory design unnecessarily difficult or even impossible. In these cases, the analyst may
want to consider ignoring (or “relaxing” or “weighting”) the obstructing relation in order to
provide an additional degree of freedom in a particular design. Hence, the APM
Representation should provide the capability to dynamically relax or temporarily remove a

relation from the APM without having to permanently delete.

Objective 13: Support for multiple constraint solvers.

Specific implementations of the APM Representation (see Objective 18) will require the
services of a constraint-solving system to solve the relations defined in an analyzable product
model. It should be possible to use any constraint solving system (internal or external) in
conjunction with a specific implementation of the APM Representation. In other words,
implementations of the APM Representation should not be tied to any particular constraint
solving system. Moreover, it should be easy to replace one constraint solver with another

within the same implementation.

Objective 14: A/low constraint solver-independent definition of relations.

The syntax used to define relations in an analyzable product model should be independent
from the syntax used by the specific constraint solver system being used (see Objective 13).
It should be possible to map the syntax used to define relations in an analyzable product

model into the syntax of any specific constraint-solving system.
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Objective 15: A/low easy definition and modification of relations.

The APM Representation should provide an easy way to add relations to an analyzable
product model or to modify existing ones. The codes of the applications using the analyzable

product model should not need to be modified to reflect change or additions of relations.

Analysis Support Objectives

These objectives refer to the ability to support the information requirements of diverse

engineering analysis models and solution methods.

Objective 16: A/low support for multiple analysis models and solution methods.

The APM Representation should provide a mechanism for defining a single source of
information that supports the need of a sez of related analyses (Objective 1). In general, the
analyses in these sets will be based on different analysis models. In addition to multiple
analysis models, these analyses may also use different solution methods to reach a solution
(e.g., formula-based, finite-element, etc.). The choice of a particular combination of analysis
model and solution method will depend on the level of accuracy desired and the computer
resources available. The information requirements of these different analysis models and
solution methods may vary. The APM Representation should allow for the creation of
APMs that support the information requirements of multiple analysis models and solution

methods.

Objective 17: Provide flexibility to easily add additional analyses.

It should be easy to add a new analysis to the suite of analyses currently being supported by
an analyzable product model. A new analysis may place additional information requirements

on the analyzable product model by adding any of the following:
1. New phenomena (or combination of phenomena) being investigated.
2. New analysis models.

3. New solution methods.
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Data Access and Client Application Development Objectives

These objectives refer to the ability to develop analysis applications that access APM-defined
information through a set of well-defined operations and to take advantage of the APM
Representation to simplify the codes and enhance the maintainability of these analysis

applications.

Objective 18: Provide a set of operations to access APM-defined information.

The APM Representation should provide a reasonable set of data-access operations that can
be performed on an analyzable product model. Implementations of these operations in
specific programming languages will result in some form of library of software components
that can be used to develop client applications. Collectively, these data-access operations will
provide a protocol through which client applications can access information about the
structure of an analyzable product model as well as particular instances of data conforming

to this structure.

The operations provided should support critical design-analysis integration tasks such as
loading the definition of the analyzable product model, loading and combining the design

data, using the design data for analysis, and saving changes.

Objective 19: A/low the definition of late-bound operations.

Late-bound operations are designed to manipulate APM information without previous
knowledge of the domain-specific structure of the data. It should be possible to reuse these
operations in a range of application domains without having to modify or customize them.
More importantly, they should allow the development of APM-generic applications:
applications designed to work with a7y domain-specific APM. Examples of potential APM
Generic Applications that could be developed using late-bound operations are APM
Browsers, APM Integrated Development Environments, and APM Conformance-Checking
Tools.
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Objective 20: Reduce the complexity of analysis code.

When using the services of an analyzable product model, analysis applications should not
have to include code to combine the information coming from multiple design sources nor
should they have to include code to carry out the transformations to idealize design
information. In addition, the semantic mismatch between the design representations and the
analysis representation on which the application is based should already be resolved in the
analyzable product model (Objective 2). As a result, the codes of the APM-based analysis
applications should be considerably simpler than the codes of those that do not.

Objective 21: Isolate analysis applications from the format of the design data.

The APM Representation should provide some mechanism to isolate the code of the
analysis applications from the choice of data format in which the design information is
stored. In other words, the choice of data formats should not affect the code of the analysis
applications. In addition, it should be possible to switch from one data format to another

without having to modify the codes of the analysis applications.

Objective 22: Allow development of constraint solver-independent client applications.

The APM Representation should provide a mechanism to isolate the code of the analysis
applications from the constraint solver being used. In other words, the choice of constraint
solver used in a specific implementation should not affect the code of the analysis
applications. In addition, it should be possible to switch from one constraint solver to

another without having to modify the code of the analysis applications.

Objective 23: Hide constraint-solving details from client applications.

The operations specified by the APM Representation (see Objective 18) should handle

constraint-solving details such as:
1. Deciding when to solve for an unknown or idealized value;
2. Deciding which relations to use;

3. Prepare the constraint-solving request for the specific solver;
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4. Running the constraint solving process; and

5. Receiving and interpreting the results returned by the constraint solver.

These actions should be completely transparent to the developers of the analysis
applications. In other words, developers of analysis applications using the APM
Representation should not have to write any code to handle the constraint-solving details

listed above.

Compatibility Objectives

These objectives refer to the ability to exchange information between the APM

Representation and other representations (standard or otherwise).

Objective 24: Ieverage existing product data exchange standards.

The APM Representation should leverage the ability of existing standard product data
representations such as STEP (ISO 10303) to represent design information in a neutral way.
The APM Representation should be able to read design information conforming to these

standards.

Objective 25: Support multiple design data formats.

The analyzable product model should be able to combine design information stored in
multiple formats. If standard representations (such as STEP or IGES) are used as the source
of design information, the integration strategy used by the APM Representation must take
into account that there will be invariably some analysis that requires information not
supported by any existing standard representation. Obviously, it would be impractical to
develop a new standard representation for each new analysis situation that arises, as the
number of these representations would grow exponentially. Therefore, the overall design
representation must be considered, in general, as an aggregation of standard and non-

standard (proprietary or native) representations.
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Obijective 26: Compatible with existing CAD/CAE Tools.

From the point of view of the APM, CAD tools ¢reate the design data that populates the
APM whereas CAE tools consume this design data and the idealized information added in
the APM. Hence, compatibility with existing CAD tools means that the APM
Representation should be able to read the design data created by these tools. On the other
hand, compatibility with existing CAE tools means that the populated APM should be

usable with these tools.

Objective 27: Compatible with the Multi-Representation Architecture (MRA).

The APM Representation should be compatible with the MRA approach developed at the
Georgia Institute of Technology by Drs. Russell S. Peak and Robert E. Fulton (see Chapter
7). More specifically, the APM Representation should be able to complement the MRA by
providing the product information required by PBAMs, thus filling the gap between design
tools and PBAMs. The APM Representation should provide a mechanism to allow PBAMs

to access the information contained in an APM.

General Objectives

This group contains general objectives for the APM Representation.

Objective 28: Be product domain-independent.

The APM Representation should be independent from any particular product domain or
industry (for example, airplane structures, printed wiring assemblies, etc.). In other words, it
should be generic. The constructs defined in this representation should not be expressed in
terms of any particular domain. The APM Representation should serve as a “template” for

creating domain-specific analyzable product models.

Objective 29: Provide unambignons and formal definitions.

The APM Representation should provide unambiguous and formal definitions of the
different building blocks used to create and use analyzable product models. These definitions

should be independent from any particular data modeling or programming language. They
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should state the meaning of these constructs, the information they contain and their
engineering significance. The APM Representation must have a well-defined structure
composed of a pre-defined vocabulary of symbols. The logical pieces of the representation

should be defined as well as rules on how those pieces can be assembled together.

Objective 30: Have a computer-interpretable form.

The APM Representation must have some type of computer-interpretable language for
defining analyzable product models. A computer program should be able to parse this
definition and create a corresponding representation of the analyzable product model in
memory that can be accessed and manipulated by analysis applications. This computer-
interpretable language must be easy to understand by humans without extensive knowledge

of its syntax.

Objective 31: Have some type(s) of graphical form(s).

The APM Representation should provide a graphical form (or a combination of graphical
forms) that can be used as visual tools for developing, communicating and documenting
analyzable product models. The nomenclature used in these graphical forms must be simple

and intuitive.

Objective 32: Provide correct results.

The APM Representation would not be of any practical values if it did not produce correct
results. The values obtained for any derived or idealized attribute should be consistent with
the relations defined in the analyzable product model. Note that this objective does not refer
to the correctness of the analysis results, but only to the calculation of derived or idealized
attributes within an analyzable product model. Of course, if the value of an idealized
attribute (for example) is calculated incorrectly, the result of the analyses that use this value

will also be incorrect.
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CHAPTER 4

THE ANALYZABLE PRODUCT MODEL REPRESENTATION

This chapter provides a formal presentation of the Analyzable Product Model
Representation and its different components. The chapter begins describing a design-analysis
integration example using the APM Representation (Section 39), with the purpose of
providing an overview of the APM approach and the concepts introduced later in the
chapter. Next, Section 40 overviews the four main components of the APM Representation
(APM Information Model, APM Definition Languages, APM Graphical Representations and
APM Protocol) which are formally presented in the remaining sections of the chapter.
Section 41 introduces the APM Information Model, which contains the fundamental
building blocks of the APM Representation. Section 51 introduces the two definition
languages developed in this work - APM-S and APM-I - used to define APMs and APM
instances, respectively. Section 54 introduces three graphical representations used to
represent APM concepts (APM EXPRESS-G Diagrams, APM Constraint Schematics
Diagrams, and APM Constraint Network Diagrams). Section 58 describes a group of APM

information-access operations collectively known as the APM Protocol.

This chapter is a self-contained, implementation-independent presentation of the conceptual
aspects of the APM Representation, containing the main theoretical contribution of this
thesis. A prototype implementation of the concepts introduced in this chapter is presented
in Chapter 64, and several test cases validating these concepts — using the prototype
implementation of Chapter 64 — are presented in Chapter 83. Figures 38-13 and 38-14 —
introduced in Section 40 — provide a roadmap for the concepts presented in this and the

next chapters.
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Design-Analysis Integration Using the APM Representation

This section overviews how the APM Representation fits in a design-analysis integration
scenario such as the one discussed in Section 2. The purpose of this overview is to provide a
general context for the sections that follow, which describe the individual components of the

APM Representation in detail.

One of the earlier test cases developed by the author will be used as an example to help
introduce and demonstrate some of the basic APM concepts. This test case demonstrates
how the APM Representation is used in the design and analysis of a hypothetical linkage
used in the mechanism of an airplane wing flap (“flap link”, for short) such as the one

shown in Figure 38-1.
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Figure 38-1: Airplane Wing Flap Linkage (“Flap Link’)
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The design-analysis scenario of this example is illustrated in Figure 38-2 and involves two
design applications (a solid modeler and a materials database manager). Each design
application creates information about a different aspect of the product: the solid modeler
creates geometric information and the materials database manager creates a database of the
detailed properties of materials available for the fabrication of the flap link. This information

is stored in two separate design repositories (labeled “Geometric Data” and “Material
Data”).

APM Definition
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Figure 38-2: Flap Link Design-Analysis Integration Using the APM

In general, design information created by design applications may be stored in a variety of

data structures and file formats (both standard and native). For example, in this test case the
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geometric information is stored in a STEP Part 21 file” (Figure 38-3), whereas the material

roperties are stored 1n an -1 1ile 1gure -).
properti din an APM-I file® (Figure 38-4

DATA;

#10=FLAP_LINK('FLAP-001" , *, #20 , #40 , #60 , #100 , #110 , ‘aluminum’ );
#20=SLEEVE( 1.5, 0.5, 0.5, #30 );
#30=COORDINATES( 0.0, 0.0 );

#40=SLEEVE( 2.0, 0.6, 0.75 , #50 );
#50=COORDINATES( 15.5, 0.0 );

#60=BEAM( #70 , * ):

#70=CROSS_SECTION( #80 , #90 );
#80=DETAILED_|_SECTION(*,0.1,0.1,%,*,*,0.15);
#90=SIMPLE_|_SECTION(*,*,*,*,*);
#100=RIB(10.0, 0.5, * );

#110=RIB( 10.0, 0.5, * );

#120=FLAP_LINK('FLAP-002' , * , #130 , #150 , #170 , #210 , #220 , 'steel' );
#130=SLEEVE( 1.5, 0.5, 0.5, #140 );
#140=COORDINATES( 0.0, 0.0 );

#150=SLEEVE( 2.0, 0.6, 0.75 , #160 );
#160=COORDINATES( 20.00 , 0.0 );

#170=BEAM( #180 , * );

#180=CROSS_SECTION( #190 , #200 );
#190=DETAILED_|_SECTION(*,0.1,0.1,*,*,*,0.15);
#200=SIMPLE_|_SECTION(*,*,*,*,*):

#210=RIB( 10.0, 0.5, *);

#220=RIB(10.0, 0.5, * );

(* = Unknown value)

Figure 38-3: Flap Link Geometric Data File (STEP P21)

DATA;

INSTANCE_OF material;
name : "steel";
stress_strain_model.temperature_independent_linear_elastic.youngs_modulus : 30000000.00;
stress_strain_model.temperature_independent_linear_elastic.poissons_ratio : 0.30;
stress_strain_model.temperature_independent_linear_elastic.cte : 0.0000065;
stress_strain_model.temperature_dependent_linear_elastic.transition_temperature : 275.00;
END_INSTANCE;

INSTANCE_OF material;
name : "aluminum";
stress_strain_model.temperature_independent_linear_elastic.youngs_modulus : 10400000.00;
stress_strain_model.temperature_independent_linear_elastic.poissons_ratio : 0.25;
stress_strain_model.temperature_independent_linear_elastic.cte : 0.000013;
stress_strain_model.temperature_dependent_linear_elastic.transition_temperature : 156.00;
END_INSTANCE;

INSTANCE_OF material;
name : "cast iron";
stress_strain_model.temperature_independent_linear_elastic.youngs_modulus : 18000000.00;
stress_strain_model.temperature_independent_linear_elastic.poissons_ratio : 0.25;
stress_strain_model.temperature_independent_linear_elastic.cte : 0.000006;
stress_strain_model.temperature_dependent_linear_elastic.transition_temperature : 125.00;
END_INSTANCE;

END_DATA;

Figure 38-4: Flap Link Material Data File (APM-I)

7 STEP Part 21 is the physical data exchange format of the STEP standard (Appendix A).

8 The APM-I format was developed for this work and is introduced in Section 53.
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The design information is used, as shown on the right side of Figure 38-2, to drive two
analysis applications. Both analysis applications (Figures 38-5 and 38-6) are used to estimate
the change in length and the axial stress of the flap link due to an applied extensional force.
The two analyses differ in their so/ution methods and degree of fidelity: one is 1D formula-

based and the other is 2D finite-element based.

:i Flap Link Extensional Analysis [_ (O] x| I

File
. SelectFlapLink  [FLAP-002 v|
Effective
Length FEA-Based |
H H Part Mumhber FLAP-002
(idealized ~a
. Effective Length 18.75
attrIbUte) Sleeve 2 Center.x 200
Material Name steel
E J.0E7
Simple Area 0.5
Detailed Area 0.573933859
cte B.5E-6

(" Critical-Detailed (@ Critical-Simple
Force 1000 .
Delta T i AnaIyS|s
Delta L 0.00125
Stress-X 2000.0

Calculate |

Figure 38-5: Formula-Based Flap Link Tension Analysis
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Figure 38-6: FEM-Based Flap Link Tension Analysis

As shown in Figure 38-2, an APM (“Flap Link APM”) is located between the design and the
analysis applications, providing a single, integrated source of analysis-oriented product
information. Bo#h analysis applications and bozh design applications read and write

information from and to this single source.

This APM is defined using a special modeling language - developed for this work and
presented in Subsection 52 - called the APM Structure Definition Language (APM-S). With
this language, developers define the source sets, domains, attributes, relations and source set
links that make up the structural definition of the APM. The APM Definition is stored in the
APM Definition File shown on the top portion of Figure 38-2 and in detail in Figures 38-7
and 38-8. A graphical view of the APM Definition, using the Constraint Schematics
Representation is shown in Figure 38-9°. This representation shows the different domains
defined in the APM (such as flap link, sleeve, beam, etc.), their attributes (such as
effective_length, sleeve_1, material, etc.) and some of the design and idealization

2 «<¢ 2 <<

relations among them (“pirl”, “pir2”, “pir12” and “pr2”).

9 The constraint schematics diagrams used in this figure will be formally introduced in Subsection 56. Meanwhile, refer to
Appendix I for a brief summary of the basic nomenclature.
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APM flap_link;
SOURCE_SET flap_link_geometric_model ROOT_DOMAIN flap_link;

DOMAIN flap_link;

ESSENTIAL part_number : STRING;

IDEALIZED effective_length : REAL;

sleeve_1: sleeve;

sleeve_2 : sleeve;

shaft : beam;

rib_1 : rib;

rib_2 : rib;

ESSENTIAL material : STRING;
PRODUCT_RELATIONS

pr1 : "<rib_1.length> == <sleeve_1.width>/2 - <shaft.tw>/

pr2 : "<rib_2.length> == <sleeve_2.width>/2 - <shaft.tw>/2";
PRODUCT_IDEALIZATION_RELATIONS

pir1 : "<effective_length> == <sleeve_2.center.x> - <sleeve_1.center.x> - <sleeve_1.radius> -

<sleeve_2.radius>";

pir2 : "<shaftwf> == <sleeve_1.width>";

pir3 : "<shaft.hw> == 2*( <sleeve_1.radius> + <sleeve_1.thickness> - <shaft.tf> )';

pir4 : "<shaft.length> == <effective_length> - <sleeve_1.thickness> - <sleeve_2.thickness>";
END_DOMAIN;

DOMAIN sleeve;
ESSENTIAL width : REAL;
ESSENTIAL thickness : REAL;
ESSENTIAL radius : REAL;
center : coordinates;
END_DOMAIN;

DOMAIN coordinates;
ESSENTIAL x : REAL;
ESSENTIAL y : REAL;

END_DOMAIN;

DOMAIN beam;
critical_cross_section : MULTI_LEVEL cross_section;
length : REAL;
ESSENTIAL tf : REAL;
ESSENTIAL tw : REAL;
ESSENTIAL t2f : REAL;
ESSENTIAL wf : REAL;
ESSENTIAL hw : REAL;
PRODUCT_IDEALIZATION_RELATIONS
pir5 : "<critical_cross_section.detailed.tf>
pir6 : "<critical_cross_section.detailed.tw:
pir7 : "<critical_cross_section.detailed.t2f> i
pir8 : "<critical_cross_section.detailed.wf> == <wf>";
pir9 : "<critical_cross_section.detailed.hw>
END_DOMAIN;

MULTI_LEVEL_DOMAIN cross_section;
detailed : detailed_|_section;
simple : simple_|_section;
PRODUCT_IDEALIZATION_RELATIONS

pirt3: ™
END_MULTI_LEVEL_DOMAIN;

DOMAIN simple_|_section SUBTYPE_OF |_section;
PRODUCT_IDEALIZATION_RELATIONS

pirl4: "<area> == 2*<wf>*<tf> + <tw>*<hw>";
END_DOMAIN;

DOMAIN detailed_|_section SUBTYPE_OF |_section;

IDEALIZED t2f : REAL;
PRODUCT_IDEALIZATION_RELATIONS
pir15: "<area> == <wb>*( <tf> + <t2f> ) + <tw>*( <t2f> - <t1f> ) +
<tw>*<hw:
pirt6: "<t1f> == <tf>";
END_DOMAIN;

DOMAIN I_section;
IDEALIZED wf : REAL;
IDEALIZED tf : REAL;
IDEALIZED tw : REAL;
IDEALIZED hw : REAL;
IDEALIZED area : REAL;

END_DOMAIN;

DOMAIN rib;
ESSENTIAL base : REAL;
ESSENTIAL height : REAL;
length : REAL;
END_DOMAIN;

END_SOURCE_SET;

Figure 38-7: Flap Link Test Case APM Definition File

DOMAIN material;
ESSENTIAL name : STRING;

END_DOMAIN;

MULTI_LEVEL_DOMAIN material_levels;

END_MULTI_LEVEL_DOMAIN;

DOMAIN linear_elastic_model;
IDEALIZED youngs_modulus : REAL;
IDEALIZED poissons_ratio : REAL;

IDEALIZED cte : REAL;
END_DOMAIN;

IDEALIZED transition_temperature : REAL;
END_DOMAIN;
END_SOURCE_SET;
LINK_DEFINITIONS
END_LINK_DEFINITIONS;

END_APM;

SOURCE_SET flap_link_material_properties ROOT_DOMAIN material;

stress_strain_model : MULTI_LEVEL material_levels;

temperature_independent_linear_elastic : linear_elastic_model;
temperature_dependent_linear_elastic : temperature_dependent_linear_elastic_model;

DOMAIN temperature_dependent_linear_elastic_model;

flap_link_geometric_model.flap_link.material == flap_link_material_properties.material.name;

Figure 38-8: Flap Link Test Case APM Definition File (continued)
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Figure 38-9: Flap Link Test Case APM Constraint Schematics (only £lap_link_geometric_model source set shown)

An important characteristic of APMs is that they only define attributes (idealized or not) that

are /ntrinsic to the part or product as discussed later in Subsection 47.

Continuing with the example of Figure 38-2, the information from the individual design
repositories is loaded into the APM. In order to do this, the APM loading operations use the
services of special objects called Source Data Wrappers, which “know” the formatting
details of the design data. In this test case, for example, there is a Source Data Wrapper to
read STEP data (STEP Wrapper) and another to read APM-I data (APM-1 Wrapper). These
wrapping objects read the design data, perform the necessary conversions, and pass it to the
APM in a neutral form understood by the APM. This source data wrapping technique is

introduced in Subsection 60 and discussed in more detail in Subsection 79.

As the data stored in the design repositories is loaded into the APM, corresponding APM
instances are created. These instances, labeled “Source Set Instances” in the figure, are still
grouped in the APM by their source of origin (that is, instances coming from the same

design repository are grouped together in the same source set). The next step is to /ink these
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instances, according to linking rules defined in the APM Definition. For example, in this case
the material name of the flap link is replaced with a material object when the names of both
are the same. The result of this linking operation is a single, unified set of instances (labeled
“Linked APM Instances” in the figure). The APM Data Linking Operation is introduced in

Subsection 60 and discussed in detail in Subsection 79.

Once the design instances are loaded and linked, analysis applications may access them
through a specific set of access functions collectively known as in the APM Protocol. Values
for derived or idealized attributes (attributes not created by the design applications but
needed for analysis) are computed in the APM as they are requested by the analysis
applications. For example, the formula-based analysis application of the flap link example
requires the value of an idealized attribute called “effective length” (Figure 38-5). Since
effective length is an idealized attribute of the flap link, its value is not populated by the
design tool (that is, it does not have a value in the design model of Figure 38-3). However,
the APM Definition File specifies the mathematical relation needed to calculate its value
given the coordinates of the centers of the two sleeves of the flap link (product idealization
relation “pirl”, in domain “flap_link”, Figure 38-9). Thus, when the analysis application
executes the following operations from the APM Protocol querying the value of the effective
length (L_eff):

L eff = flapLinkInstance.getReallInstance( "effective length"
) .getRealValue ()

the APM sends, behind the scenes, the relations and the values needed to calculate the
effective length to an external constraint solver (Wolfram Research’s Mathematica (Wolfram
1996) in this example). The constraint solver solves the system of equations and returns the
value of the effective length back to the APM. A wrapping approach similar to the one used
to read design data, is also used for constraint solving: an object called APMSolverWrapper
wraps the constraint solver and handles the communication between the solver and the
APM. The APMSolverWrapper receives a request from the APM to solve a system of
equations, translates these requests into the appropriate solver-specific commands, runs the
solver, gets the results, and sends them back to the APM in a neutral form specified in
advance. The Constraint Solver Wrapping Technique used in the APM is discussed in detail

in Subsection 81.
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Some analysis applications will require more APM information than others, depending on

their degree of fidelity and the analysis models on which they are based. For example,
Figures 38-10 and 38-11 show the APM information required by the formula- and FEA-

based flap link tension analyses, respectively. As expected, the FEA-based analysis requires

more detailed information about the flap link than the simpler, less accurate formula-based

analysis.
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Figure 38-10: APM Information used by the Formula-Based Flap Link Tension Analysis
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Figure 38-11: APM Information used by the FEA-Based Flap Link Tension Analysis

This example also illustrates two important features of the APM regarding analysis
idealizations. The first is the APM’s support for multi-fidelity idealizations. As shown in
Figure 38-12, the formula-based analysis of this test case uses an idealized attribute called
“critical cross section” belonging to the shaft of the flap link. As the figure shows, there are
two choices for this critical cross section: an approximate or “simple” version in which the
critical cross section is simplified as a straight I-Beam, and a more detailed version that takes
the variable thickness of the flanges into account. The detailed version represents the actual
design, and the simple one illustrates how these can be one or more idealized views of this

design feature.
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Figure 38-12: Multi-Fidelity Idealizations Example

Secondly, note the reusability of the idealizations defined in the APM. As also shown in
Figure 38-12, both analyses use the “simple” idealized version of the critical cross section of
the shaft.

As indicated by the double-headed arrows in Figure 38-2, the sequence of events just
described in this example could also take place in the reverse order. For example, the process
could start with the tensional analysis determining a target value for the effective length of
the flap link. Then, the same idealization relation used before (“pirl”) would be run this time
“in reverse” to calculate (or synthesize) the coordinates of one of the sleeves given the
effective length and the coordinates of the other sleeve as inputs. Once the value for this
design attribute is obtained, it could be stored back to the original design repository and read

by the solid modeler.

The flap link example used in this subsection will be used throughout the remainder of the

chapter to illustrate the APM concepts that will be presented.
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APM Representation Overview

As stated in Chapter 27, the main purpose of this thesis is to develop a formal product
representation specifically tailored to analysis that facilitates design-analysis integration. The
rest of this chapter formally introduces this representation, called the Analyzable Product
Model (APM) Representation.

As shown in Figure 38-13, the APM Representation consists of the following four main
components, explained in detail in the sections that follow:

1. APM Information Model (Section 41);

2. APM Definition Languages (Section 51);

3. APM Graphical Representations (Section 54); and

4. APM Protocol (Section 58).

Information
Model

Definition
Languages

(Section 4.3) (Section 4.4)
Representation
Graphlca.l Protocol
Representations
(Section 4.5) (Section 4.6)

Figure 38-13: APM Representation Components

The APM Information Model contains the basic building blocks that make up the theoretical
foundation of the APM Representation and provide the basic constructs to build APMs.
These constructs describe product information in a way that is particularly convenient for

design-analysis integration. Their definitions are presented in this chapter in mathematical
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form and therefore are independent from any particular data modeling or programming

language.

Two APM Definition Languages are introduced in this thesis: the APM Structure Definition
Language (APM-S), used to define the structure (that is, the source sets, domains, attributes,
relations, and source set links) of specific APMs, and the APM Instance Definition Language
(APM-I), used to define instances of the domains defined in these APMs.

Three APM Graphical Representations are also introduced: APM Constraint Schematics
Diagrams, APM EXPRESS-G Diagrams and APM Constraint Network Diagrams. The
APM Graphical Representations may be used as visual tools for developing new APMs, or
for communication and documentation purposes. Each of these graphical representations

conveys a certain aspect of the APM better than the others.

The APM Protoco/ is a minimal set of APM properties and conceptual operations for
interacting with the APM Representation. These operations can be transformed into
programming protocols in specific implementations of the APM Representation, intended to

be used by developers of APM-driven applications.

The rest of this chapter introduces the four components of the APM Representation at a
conceptual level. As illustrated in Figure 38-14, the APM Information Model and the APM
Protocol provide the conceptual basis for deriving general APM properties and
characteristics that are implementation-independent. They also provide a specification that
can guide implementation in particular computing environments. As also shown in the
figure, these two components can be implemented in some target information modeling or
programming language (Chapter 64 discusses a prototype implementation of these two
components developed by the author). As Figure 38-14 illustrates - and as it will be
discussed in detail in Chapter 64 - the constructs defined in the APM Information Model
were implemented in this work as EXPRESS entities and as Java classes. The operations of
the APM Protocol, on the other hand, were implemented as methods of these Java classes.
Chapter 83 describes several test cases that tested and validated the APM Representation
against real-world applications using the prototype implementation of the APM presented in
Chapter 64.

77



Representation

APM Specification

(Chapter 4)

APM

Information
Model

(Section 4.3)

APM
Protocol

%

(Section 4.6)

APM

Definition
Languages

(Section 4.4)

Figure 38-14: APM Representation Implementation and Testing
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This section formally introduces the first and main component of the APM representation:

the APM Information Model. The APM Information Model is a formal engineering

representation, specifically tailored to analysis, whose primary goal is to facilitate design-

analysis integration. It contains the fundamental constructs used to define analyzable product

models. It also provides a basis for the rest of the APM Representation components

presented in the remaining sections of this chapter.

The fundamental constructs contained in the APM Information Model provide a theoretical

foundation for the APM Representation. Their definitions are expressed in terms of set

theory notation, and therefore are independent from any particular data modeling or

programming language.
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As discussed in Chapter 1, design-analysis integration imposes special information
requirements that had to be taken into account when developing the APM Information
Model. To satisfy these unique requirements of design-analysis integration, the APM
Information Model supports information beyond the physical definition of a product, its
assembly structure and features. In fact, the detailed physical definition of a product and its
geometry is often not as critical for analysis as are the idealizations on this physical data. The
APM must also be able to contain information that describes how data from multiple
sources is to be joined for analysis, and how derived and idealized attributes are obtained

from the “real” or “manufacturable” attributes of the product.

Figure 38-15 is a simplified view of the APM Information Model showing its three
fundamental groups of constructs - APM Domains, APM Attributes and APM Domain

Instances — and how they relate to each other.

As shown in the figure, there are three main types of APM Domains: APM Complex
Domains, APM Aggregate Domains and APM Primitive Domains. APM Complex Domains
are used to describe the properties of “things” in the physical or in the conceptual world.
They contain APM Attributes, which in turn may be APM Complex Attributes, APM
Aggregate Attributes or APM Primitive Attributes (not shown in the figure), meaning that
their domains are APM Complex Domains, APM Aggregate Domains, or APM Primitive
Domains, respectively. APM Complex Attributes also contain attributes, thus allowing for
the definition of arbitrarily deep domain-attribute trees. The leaves or terminal nodes of
these trees are APM Primitive Attributes, which cannot be subdivided into attributes any
further. APM Complex Domains may also contain APM Relations, which describe the

mathematical constraints that exist among their terminal attributes.

APM Domain Instances are used to define instances of an APM Domain. There is one

subtype of APM Domain Instance corresponding to each subtype of APM Domain.
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Figure 38-15: Simplified APM Information Model (EXPRESS-G)

APM Domains and their corresponding APM Domain Instances can be grouped in sets

called APM Source Sets (Figure 38-16). As it will be discussed later in more detail, APM

Source Sets group APM Domains whose instances come from the same source or data

repository. As also shown in Figure 38-16, an APM is a collection of these APM Source Sets,

plus a list of APM Source Set Links, which specify how instances from different source sets

should be joined. The following sections will discuss in greater detail these and other

constructs that were omitted for this explanation.
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Figure 38-16: Simplified APM Information Model (continued)

Figure 38-17 shows an APM Constraint Schematics Diagram illustrating some of the APM
constructs mentioned above (APM Constraint Schematics Diagrams will be introduced in
Subsection 56, meanwhile, see Appendix I for a brief summary of their notation). In this
type of diagram, circles represent APM Domains and the labeled lines branching out of
these circles represent their attributes. On the left side of Figure 38-17 are two APM Source
Sets (Source Sets 1 and 2), which contain APM Complex Domains A and X, respectively. An
APM Source Set Link specifies how these two domains are to be joined (specifically, when
A.a,.b, is equal to X.x;) to create the linked APM on the right. The resulting linked APM
contains one APM Complex Domain called A, which in turn contains four attributes (a,
through a,). Attributes a,, a; and a, are APM Primitive Attributes (a, and a, are real numbers
and a; is a string), whereas attribute a, is an APM Complex Attribute of type B (an APM
Complex Domain), which in turn contains attributes b, and b,. This Subdivision of domains
into attributes continues until all the terminal nodes of the tree (namely, attributes a,, by, Xx,,

V1, V2, a3 and a,) are APM Primitive Attributes.

The figure also shows how some of the attributes are related through APM Relations. For
example, attributes a; and a,.b, are related via relation R1. For example, R1 may specify that

the value of a, is twice the value of a,.b,.

APM Primitive Attributes are grouped into product and idealized. Product APM Primitive
Attributes belong to the physical or design description of the product. They are usually
defined in one of the original source sets from which the linked APM was built. In this
example, attribute a, is a Product APM Primitive Attribute (it was originally defined in

Source Set 1). Product attributes may be also related to other product attributes via APM
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Product Relations (a type of APM Relation) such as R1, R2 and R3. Idealized APM Primitive
Attributes, on the other hand, belong to the idealized description of the product and are
added to the linked APM. In this example, a, is the only Idealized APM Primitive Attribute.
APM Relations (more specifically APM Idealization Relations such as R4 in the figure)
specify how these idealized attributes are obtained from the other attributes of the APM.

The figure also illustrates how the constraint network (Subsection 50) can be obtained from
the APM.

source set product attribute

s

Source Set 1

\ Linked APM Constraint Network
A a R * %
a B % A product
O— relation
a S s

source set I|nk\;

Source Set 2

T

idealized attribute \ product idealization constraint constraint
relation network network
variable relation

Figure 38-17: Main APM Information Model Constructs

Figure 38-18 shows another APM Constraint Diagram illustrating two sample instances of
domain A from the linked APM of Figure 38-17. In this case, the relations are:

Rl : “al == a2.bl * 2”7

R2: “a2.bl == a2.b2.x2.yl + 3”
R3: “a2.b2.x2.yl == -a2.b2.x2.y2”"
R4: “a4 == a2.b2.x2.y2"2"

In this diagram, circles represent APM Domain Instances. The primitive types (R and S)
have been replaced by actual values (in this example, it is assumed that the values are

consistent with the APM Relations). An APM Client Application (Section 89) could access
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and manipulate these instances in order to perform some task (such as engineering analysis)

using the operations defined in the APM Protocol (Section 58).

Linked APM Instances

Figure 38-18: Main APM Information Model Constructs (Instances)

An important characteristic of the APM Information Model is that it is gexeric. That is, it is
not expressed in terms of any particular domain application. Hence, the APM Information

Model effectively becomes a “template” to create domain-specific APMs.

Figure 38-19 illustrates this generic nature of the APM Information Model. At the top of the
figure is the generic APM Information Model. Notice from Figure 38-15 that the model is
not bound to any particular domain, in other words, its entities (“APM Domain”, “APM

Attribute”, “APM Domain Instance”, etc.) may be used to describe potentially anything.
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Figure 38-19: Generic Nature of the APM Information Model

The second part of Figure 38-19 shows how the generic constructs of the APM Information
Model are populated to obtain the APM Generic Data. Figure 38-20 shows an example of
this APM data'"’. In this figure, instances numbered 10 through 80 define a domain called
“plate” with four attributes: “length”, “width”, “thickness” and “hole”. The first three
attributes are real numbers, whereas the fourth attribute is of type “hole”, which in turn has
an attribute called “diameter” of type real. Instances 100 through 150 define a particular
instance of the plate domain with length = 10.0, width = 5.0, thickness = 0.5 and a hole
with diameter = 2.5. The first group of instances (instances 10 through 80, labeled “Model
Definition Data” in Figure 38-19), define the structure of the domain-specific model,
whereas the second group of instances (100 through 150, labeled “Instance Definition Data”
in Figure 38-19) define the domain-specific daza. Instances in the second group are instances

of the domains defined by the instances in the first group.

10 STEP Part 21 format is used in this example to define instances of EXPRESS entities. P21 files are discussed in
Appendix A.
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Model Definition Data

#10 = APMObjectDomain( “plate” , ( #20 , #30 , #40 , #50 ) );
#20 = APMAttribute( “length” , #60 );

#30 = APMAttribute( “width” , #60 );

#40 = APMAttribute( “thickness” , #60 );

#50 = APMAttribute( “hole” , #70 );

#60 = APMPrimitiveDomain( “real” );

#70 = APMObjectDomain( “hole” , #80 );

#80 = APMAttribute( “diameter” , #60 );

Instance Definition Data

#100 = APMObijectinstance( #10, (#110, #120 , #130, #140) );
#110 = APMPrimitivelnstance( #60 , 10.0 );

#120 = APMPrimitivelnstance( #60 , 5.0 );

#130 = APMPrimitivelnstance( #60 , 0.5 );

#140 = APMObjectinstance( #70 , (#150) );

#150 = APMPrimitivelnstance( #60 , 2.5 );

Figure 38-20: APM Data Example (STEP P21)

As shown in the third portion of Figure 38-19, model definition instances define a domain-
specific model (shown in Figure 38-21 using EXPRESS-G and EXPRESS). The generic
instance definition data of Figure 38-20 may be translated to create an equivalent set of
domain-specific instances that conforms to this domain-specific model. An example of the
result of such translation is shown in Figure 38-22. As illustrated in Figure 38-19, domain-

specific instances are normally populated by the design tool.
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EXPRESS- G

length
width

thickness REAL

Plate

hole

di t

EXPRESS

ENTITY plate;
length : REAL;
width : REAL;
thickness : REAL;
hole : hole;

END_ENTITY;

ENTITY hole;
diameter : REAL;
END_ENTITY;

END_SCHEMA,

SCHEMA domain_specific_schema

Figure 38-21: Domain-Specific Model Example

DOMAIN plate;

ESSENTIAL length : REAL;

ESSENTIAL width : REAL;

ESSENTIAL thickness : REAL;

hole : hole;

IDEALIZED critical_area : REAL;
PRODUCT_IDEALIZATION_RELATIONS

pir1 : "<critical_area> == ( <width> - <hole1.diameter> ) * <thickness>";

END_DOMAIN;

Model Definition Data

APM Definition
(APM-S)

Instance Definition Data

#10 = APMObjectDomain( “plate” , (#20 , #30 , #40 , #50 , #60) , (#100));
#20 = APMPrimitiveAttribute( “length” , #70 , ESSENTIAL );

#30 = APMPrimitiveAttribute( “width” , #70 , ESSENTIAL );

#40 = APMPrimitiveAttribute( “thickness” , #70 , ESSENTIAL );

#50 = APMObjectAttribute( “hole” , #80 );

#60 = APMPrimitiveAttribute( “critical_area” , #70 , IDEALIZED );

#70 = APMPrimitiveDomain( “real” );

#80 = APMObjectDomain( “hole” , ( #90) );

#90 = APMPrimitiveAttribute( “diameter” , #70 );

#100 = APMRelation( “pir1”, “critical_area = (width-hole.d)*thickness” );

!

Domain-Specific Model (EXPRESS)

ENTITY hole;
diameter : REAL;
END_ENTITY;

ENTITY plate;
length : REAL;
width: REAL;
thickness : REAL;
critical_area : REAL;
hole : hole;
END_ENTITY;

#100 = APMObjectDomainlnstance( #10 , ( #110, #120 , #130 , #140,

#150) );
#110 = APMReallnstance( #70, 10.0 );
#120 = APMReallnstance( #70, 5.0 );
#130 = APMReallnstance( #70, 0.5 );
#140 = APMObjectDomainInstance( #80 , ( #160 ) );
#150 = APMReallnstance( #70 , 2.25);
#160 = APMReallnstance( #70, 2.5 );

instantiates

<=

Domain-Specific Instances (STEP P21)

#10 = PLATE( 10.0, 5.0, 0.5, #20);
#20=HOLE(25);

Figure 38-22: Domain-Specific Data Example
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Another advantage of having a generic APM Information Model - besides the capability to
create specific APMs using the same “template”- is that it allows the definition of /aze-bound
operations based on this model. These operations (shown in Figure 38-19 as the box labeled
“APM Protocol Operations”) are called late-bound because they are designed to access and
manipulate APM information without previous knowledge of the structure of the domain-
specific entities that will be created. Thus, these operations can be reused in a range of
application domains without having to be modified or customized. More importantly, they
allow the development of APM-generic applications. APM Generic Applications, as it will
discussed in more detail in Section 89, are not tied to a particular APM and therefore are
designed to work with @7y domain-specific APM. The price to pay for the late-bound nature
of these operations is that they require additional overhead, since they must find the data

structures and verify that they contain the right attributes, all at run time.
The sections that follow define and discuss the various APM constructs in greater detail,
grouped and presented as follows:

1. APM Domains (including multi-level domains’) (Subsection 42);

2. APM Attributes (Subsection 43);

3. APM Domain Instances (Subsection 44);

4. APM Domain Sets and APM Source Sets™ (Subsection 45);

5. APM Source Set Links (Subsection 46);

6. Product and Idealized APM Primitive Attributes (Subsection 47);

7. APM Relations (including idealization relations’) (Subsection 48);

8. Product Model, Manufacturable Product Model and Analyzable Product Model
(Subsection 49); and

9. Constraint Networks™ (Subsection 50).

While some of the definitions that will be presented in these sections are largely based on
other general-purpose information modeling languages like EXPRESS (ISO 10303-11 1994;
Schenck and Wilson 1994; Wilson 1996), this work adds new terms (such as the ones marked

with an asterisk (*) above) that are needed for engineering analysis.
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The definitions that follow are given as n-tuples of the form:

4= (%,%,...,X,)

3 n

Where:
a, is an APM construct (or structure);

x; is an attribute of a. Attribute x; may be also a structure or a primitive attribute from S

(the set of strings) or R (the set of reals);

In addition, a, defines a set A = { a,,a,, ... ,a, } intensionally, by stating the properties that
the members of this set must have (Lipschutz 1964; Rosen 1995; Wilson 1996). In other
words, these constructs specify “templates” from which specific instances can be created and

grouped to form sets.

APM Domains

The APM Information Model defines five types of APM Domains:

1. APM Object Domains (a type of APM Complex Domain);

2. APM Multi-Level Domains (a type of APM Complex Domain);

3. APM Primitive Domains;

4. APM Complex Aggregate Domains (a type of APM Aggregate Domain); and

5. APM Primitive Aggregate Domains (a type of APM Aggregate Domain).

The first two types of APM Domains are also known as APM Complex Domains
(Definition 38-1) because they contain a /is? of attributes (however, as it will be explained in

a few paragraphs, the meaning of this list is different in each).
An APM Object Domain is defined as follows:
od= (domain_name ,{ 8,0y, .. 8y} 3\ Vosr s Foras ooe s T §» SUPertype_domain )

(Definition 38-2)
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Where:
od, : is a specific APM Object Domain;
domain_name is the name of the domain;
{a,, ,a,,...,a, } is the ordered list of local attributes of od;
s is the number of all attributes (local and inherited) of supertype_domain;
{7oi1>725 oo s Ty } 18 the ordered list of local APM Relations of od/;
p is the number of all relations (local and inherited) of supertype_domain,

supertype_domain is the parent domain of od,.

domain_name € S, where S represents the set of strings';

Properties:

a,€ A, where A is the set of APM Attributes (Definition 38-28)";
r, € R, where R is the set of APM Relations (Definition 38-66);

supertype_domain € OD, where OD is defined below (Definition 38-3), or it may also be

null.

supertype_domain provides the means for defining inheritance hierarchies between APM
Object Domains. Following the object-oriented paradigm, a given APM Object Domain od,
inherits the attributes and relations of its parent supertype_domain. Thus, in the definition
above, { 4., ,8.,, ... ,4a, } ate called local attributes, whereas { a, ,a,, ... ,a,} are called
inherited attributes. Similarly, relations{ r,,, , Fpin , -o , Ty | are called local relations,
whereas { 7, , 1, , ..., 1, } are called inherited relations. In this work, a given domain can
only have one parent domain. In other words, only simple inbheritance is allowed. The reason

for this will be explained in Subsection 60.

11 The convention used hereafter is that all vatiables of the form xxx_name are strings (that is, xxx_name € S) unless
otherwise noted.

12 The notation convention used throughout this section is that a; is an arbitrary member of the set { ac1, as+2, ... , an }.
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Individual APM Object Domains are grouped to form the Set of APM Object Domains,
OD, as follows:

0D ={od, ,od,, ...  od, } (Definition 38-3)

Most of the “things” in the physical world are described with APM Object Domains. For
example, consider the following definition of an APM Object Domain called “Flap Link:

FlapLinkDomain = APMObjectDomain( “Flap Link” , { a, , a,, a5, 2,, a5, a, } )"

Where a, through a, are APM Attributes defined as follows':

a, = APMPrimitiveAttribute( “part_number” , String , FlapLinkIDomain )

(“part_number” is the name of the attribute, String is its type, and FlapLinkDomain is the

domain of which a, is an attribute);
a, = APMPrimitiveAttribute( “length” ;R , FlapLinkDomain );
a; = APMObjectAttribute( “sleeve_1", Sleeve , FlapLinkDomain );
a, = APMObjectAttribute ( “sleeve_2", Sleeve , FlapLinkDomain );
a; = APMObjectAttribute ( “shaft” , Beam , FlapLinkDomain ); and

a, = APMPrimitiveAttribute( “material” , S , FlapLinkDomain ).

Hence, according to this definition, the following is an instance of domain
FlapLinkDomain'" (assuming that complex objects sleeve5Instance, sleeveGlnstance and

beam8Instance are valid instances of their respective domains):

link1Instance = APMObjectDomainInstance( {“Flap Link-001”, 3.4 | sleeve5Instance

b

sleeve6lnstance , beam8 , “steel”} , FlapLinkDomain )

whereas:

13 APMObjectDomain() represents a function that creates APM Object Domains, also known as a constructor.
14 APM Attribute is formally defined in the next subsection.

15> APM Object Instance is formally defined later in this section.
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link2instance = APMODbjectDomainlnstance( {“Flap Link-002” | 2.5 , sleeve5Instance

b

beam8Instance } , FlapLinkDomain )

is not a valid instance, because it is missing one of the two sleeves and the material name.

The second type of APM Complex Domain - APM Multi-Level Domain - is defined as

follows:
md, = (domain_name , {1, ,1,, ..., 0.}, {r ,¥s, e P }) (Definition 38-4)

Where:
md: is a specific APM Multi-Level Domain;

domain_name is the name of the domain;
{1,,1,,...,1 } is the ordered list of levels of md;

{r,,ry,...,r, }is the ordered list of APM Relations of md..

Properties:
lj € A,

r.€ R

Individual APM Multi-Level Domains are grouped to form the Set of APM Multi-Level
Domains, MD, as follows:

MD={md ,md,, .. ,md, } (Definition 38-5)

By looking at the definitions of APM Object Domains (Definition 38-2) and APM Multi-
Level Domains (Definition 38-4) it may be noticed that the two are, at least structurally, very
similar. However, semantically speaking, the two types of domains are quite different. APM
Object Domains are used to describe “things” or “entities” characterized by a list of
“attributes” or “features”. On the other hand, APM Multi-Level Domains are used to

describe things or concepts whose attributes can be grouped into multiple “levels”. For
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example, as shown in Figure 38-23', an object domain A has an attribute called a,. When
viewed from one “point of view”", a, is of type B (an object domain with attributes by, b,
and b;), but when viewed from a different point of view a, is of type C (a different object
domain with attributes ¢;, ¢, and c;). These two points of view may be called “levels” of
attribute a,. One possible approach (shown in the second part of Figure 38-23) to capture
this multi-level nature of attribute a, is to create a new object domain called D that groups
the attributes from both levels (b, b,, bs, c,, ¢,, ¢;) and point attribute a; of A to it
However, with this approach, the fact that these attributes belong to some semantic
grouping or level is lost. A better approach (shown in the bottom part of Figure 38-23) is to
use a multi-level domain M, with two levels (levell and level2 of types B and C,

respectively) and point attribute a; of A to M.

—"—o0 —1—o0
3y b, a S
——=2—o0 H——2—o0
A (level 1) B b, o A (level 2